2024
DOI: 10.3390/coatings14030369
|View full text |Cite
|
Sign up to set email alerts
|

Heat of Hydration Analysis and Temperature Field Distribution Study for Super-Long Mass Concrete

Sanling Zhang,
Peng Liu,
Lei Liu
et al.

Abstract: In this study, the combination of ordinary cement concrete (OCC) and shrinkage-compensating concrete (SCC) was utilized to pour super-long mass concrete. The temperature and strain of the concrete were continuously monitored and managed actively after pouring. The investigation focused on the temporal and spatial distribution patterns of the temperature field, the temperature difference between the core and surface, and the strain evolution. Based on the constructed hydration exothermic model of layered poured… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%