This study aimed to examine the effect of canning and storage on physicochemical, mineral, and antioxidant properties and phenolic composition of apricot wholes, halves, and pulp. The findings for physicochemical properties revealed that the total soluble solids, titratable acidity, total sugars, and ascorbic acid were found higher in apricot pulp (37.15, 1.39, and 20.74% and 7.21 mg/100 g FW, respectively) followed by apricot wholes and halves throughout the storage period. The remarkable contents of potassium, phosphorous, zinc, copper, iron, and manganese were found in the apricot pulp which revealed that canning and storage slightly affected the mineral composition. Bioactive substances were identified and quantified by reversed-phase high-performance liquid chromatography, which indicated a higher presence of chlorogenic acid (34.45 mg/kg FW), quercitin-3-glucoside (16.78 mg/kg FW), neochlorogenic acid (26.52 mg/kg FW), gallic acid (5.37 mg/kg FW), kaempferol (14.22 mg/kg FW), ellagic acid (6.02 mg/kg FW), procyanidin B2 (8.80 mg/kg FW), and epicatechin (9.87 mg/kg FW) in apricot pulp followed by apricot wholes and halves throughout the storage period. The total phenolic content was found highest in apricot pulp (13.76 GAE mg/100 g FW) followed by wholes (8.09 GAE mg/100 g FW) and halves (6.48 GAE mg/100 g FW) which decreased significantly throughout the storage period. Antioxidant properties were assessed by DPPH, ABTS+, MCA, and BCBA, which were found higher in the apricot pulp (92.23 TEAC μg/g DW, 92.33 TEAC μg/g DW, 33.80 TEAC μg/g DW, and 68.40 TEAC μg/g DW, respectively) that is correlated with the higher presence of bioactive compounds. Thus, apricot pulp containing excellent sources of nutrients, minerals, phytochemicals, and antioxidant components could be used for consumption purposes that provide nutraceuticals and antioxidants globally.