2018
DOI: 10.1155/2018/8631432
|View full text |Cite
|
Sign up to set email alerts
|

Hair Follicle Dermal Cells Support Expansion of Murine and Human Embryonic and Induced Pluripotent Stem Cells and Promote Haematopoiesis in Mouse Cultures

Abstract: In the hair follicle, the dermal papilla (DP) and dermal sheath (DS) support and maintain proliferation and differentiation of the epithelial stem cells that produce the hair fibre. In view of their regulatory properties, in this study, we investigated the interaction between hair follicle dermal cells (DP and DS) and embryonic stem cells (ESCs); induced pluripotent stem cells (iPSCs); and haematopoietic stem cells. We found that coculture of follicular dermal cells with ESCs or iPSCs supported their prolonged… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 75 publications
0
2
0
Order By: Relevance
“…DP and DS cells were shown to differentiate into hematopoietic, adipogenic, and osteogenic lineages [91, 92]. DP and DS cells supported embryonic stem cells and iPSC maintenance and hematopoiesis in vitro [93]. Furthermore, DS cells exhibited immunosuppressive role to improve islet allograft survival in the mouse model of type Ι diabetes [94].…”
Section: Approaches For Hf Regeneration Using Of Human-induced Pluripmentioning
confidence: 99%
“…DP and DS cells were shown to differentiate into hematopoietic, adipogenic, and osteogenic lineages [91, 92]. DP and DS cells supported embryonic stem cells and iPSC maintenance and hematopoiesis in vitro [93]. Furthermore, DS cells exhibited immunosuppressive role to improve islet allograft survival in the mouse model of type Ι diabetes [94].…”
Section: Approaches For Hf Regeneration Using Of Human-induced Pluripmentioning
confidence: 99%
“…The generation of patient-specific α-Thal-induced pluripotent stem cells (iPSCs) from patient somatic cells, the correction of disease-causing mutations in those cells, and differentiation into haematopoietic stem cells (HSCs) offer a new therapeutic strategy for this monogenic disease [7][8][9]. Recently, single-strand oligodeoxynucleotides (ssODNs), high-fidelity CRISPR/Cas9 nuclease and small molecules were used to achieve a seamless correction of the β-41/42 (TCTT) deletion mutation in β-thalassemia patient-specific iPSCs with remarkable efficiency [10].…”
Section: Introductionmentioning
confidence: 99%