This work describes the development and application of an on-line liquid chromatography/mass spectrometry (LC/MS) method using hydrophilic interaction chromatography (HILIC) coupled to negative ion mode electrospray ionisation ion trap mass spectrometry (ESI-MS) for the analysis of highly polar carbohydrate-related metabolites commonly found in plants, ranging from reducing and non-reducing sugars and sugar alcohols to sugar phosphates. Using this method, separation and detection of a mixture of eight authentic standard compounds containing glucose (Glc), sucrose (Suc), raffinose, verbascose, mannitol, maltitol, glucose-6-phosphate (Glc6P) and trehalose-6-phosphate (Tre6P) were achieved in less than 15 min. The method is rapid, robust, selective, and sensitive, with limits of detection (LODs) ranging from 0.2 microM obtained for neutral sugars, to 1.0 microM obtained for sugar alcohols, and 2.0 microM obtained for negatively charged sugar phosphates. We have studied the negative ion collision-induced dissociation (CID) fragmentation behaviour of the non-reducing raffinose family oligosaccharides (RFOs) raffinose, stachyose, and verbascose. Mainly Bi and Ci glycosidic and Ai cross-ring structurally informative cleavages are observed. We have applied this HILIC/ESI-MS method for the analysis of Arabidopsis thaliana wild-type Columbia-0 (Col-0) and its starchless phosphoglucomutase mutant (pgm1) leaf extracts. The method was used to quantify Glc, Suc, raffinose, and Glc6P in A. thaliana extracts. Data obtained using this HILIC/ESI-MS method were compared with those obtained using a comparable porous graphitic carbon-based LC/ESI-MS method.