2012
DOI: 10.1007/978-3-642-28496-0_6
|View full text |Cite
|
Sign up to set email alerts
|

Group Law Computations on Jacobians of Hyperelliptic Curves

Abstract: We derive an explicit method of computing the composition step in Cantor's algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor's general composition involves arithmetic in the polynomial ring Fq[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
52
0
4

Year Published

2014
2014
2020
2020

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 33 publications
(57 citation statements)
references
References 37 publications
1
52
0
4
Order By: Relevance
“…4 , входящие в уравне-ния (2.6), зависят от времени, а пятый корень λ не зависит от времени. Соответствующая ордината неподвижной точки пересечения…”
Section: )unclassified
See 1 more Smart Citation
“…4 , входящие в уравне-ния (2.6), зависят от времени, а пятый корень λ не зависит от времени. Соответствующая ордината неподвижной точки пересечения…”
Section: )unclassified
“…С точки зрения современной криптографии, на гиперэллиптических кривых пара то-чек с координатами (x 1,2 , y 1,2 ) являются «сообщением», точки с координатами (x 3,4 , y 3,4 ) являются «криптограммой», а неподвижная точка с координатами (λ, μ) является откры-тым «ключом», с помощью которого мы шифруем или дешифруем сообщения [4]. Основное отличие в том, что в криптографии мы изучаем преобразования (2.11) и (2.12) над полем целых чисел или более сложным полем.…”
Section: )unclassified
“…If enough concurrent walks are used, then the amortized cost of each individual field inversion becomes roughly 3 field multiplications -this makes affine Weierstrass coordinates the fastest known coordinate system to work with for cryptanalysis. On elliptic curves, such amortized point additions require 5 F q multiplications, 1 F q squaring and 6 F q additions; on genus 2 curves, these additions cost 20 F q multiplications, 4 F q squarings and 48 F q additions [14] -see Table 1 in Section 4.…”
Section: Preliminariesmentioning
confidence: 99%
“…In the worst case, the cost of finding this representative is six multiplications, one squaring, three additions and two negations in F q ; it takes three multiplications, three additions and a negation (this time we use ζ 4 = −(ζ 3 + ζ 2 + ζ + 1) to save a multiplication) to first determine the minimum value in {ζ i u 1 } for 0 ≤ i ≤ 4, another two multiplications to compute the corresponding ζ 2i u 0 and ±ζ 4i v 1 , and finally one negation for the v 0 -coordinate. To comply with the formulas in [14], we must also recompute the two extended coordinates u 1 u 0 and u 2 1 , which additionally incurs a multiplication and a squaring. Updating the (a i , b i ) pair costs two multiplications in Z/nZ.…”
Section: Target Curves In Genusmentioning
confidence: 99%
“…Here we make a brief comparison with the previous works in [29] and [12], by considering the two most common operations in the context of cryptographic scalar multiplications: a point doubling (denoted DBL), and a mixed-doubling-and-addition (denoted mDBLADD) between two points. These two operations constitute the bottleneck of most state-of-the-art scalar multiplication routines, since the multiplication of a point in the Jacobian by an n-bit scalar typically requires α DBL operations and β mDBLADD operations, where α + β ≈ n. Thus, the improved operation counts in Table 1 give a rough idea of the speedups that we can expect when plugging these formulas into an existing genus 2 scalar multiplication routine that uses the formulas from [29] or [12]. (We give a better indication of the improvements over previous formulas by reporting concrete implementation numbers in Section 8.)…”
Section: Introductionmentioning
confidence: 99%