2012
DOI: 10.37236/2617
|View full text |Cite
|
Sign up to set email alerts
|

Graph Cospectrality using Neighborhood Matrices

Abstract: In this note we address the problem of graph isomorphism by means of eigenvalue spectra of different matrix representations:  the neighborhood matrix $\hat{M}$, its corresponding signless Laplacian $Q_{\hat{M}}$, and the set of higher order adjacency matrices $M_{\ell}$s. We find that, in relation to graphs with at most 10 vertices, $Q_{\hat{M}}$ leads to better results than the signless Laplacian $Q$; besides, when combined with $\hat{M}$, it even surpasses the Godsil and McKay switching method.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 8 publications
0
0
0
Order By: Relevance