We revisit the Emergence Proposal in the vector multiplet moduli space of type IIA N = 2 supersymmetric string vacua in four dimensions, for which the string tree-level prepotential and the string one-loop correction are exactly known via mirror symmetry. We argue that there exists an exact notion of emergence, according to which these four-dimensional couplings can be computed exactly in any asymptotic limit in field space. In such limits, a perturbative quantum gravity theory emerges, whose fundamental degrees of freedom include all complete infinite towers of states with typical mass scale not larger than the species scale. For a decompactification limit, this picture is closely related to and in fact motivated by the computation of Gopakumar-Vafa invariants. In addition, in the same limit our results suggest that the emergent theory will also contain asymptotically tensionless wrapped NS5-branes.