2015
DOI: 10.1016/j.mehy.2015.04.013
|View full text |Cite
|
Sign up to set email alerts
|

Glomerular protein separation as a mechanism for powering renal concentrating processes

Abstract: Abstract-Various models have been proposed to explain the urine concentrating mechanism in mammals, however uncertainty remains regarding the origin of the energy required for the production of concentrated urine. We propose a novel mechanism for concentrating urine. We postulate that the energy for the concentrating process is derived from the osmotic potentials generated by the separation of afferent blood into protein-rich efferent blood and protein-deplete filtrate. These two streams run in mutual juxtapos… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2017
2017

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 41 publications
0
1
0
Order By: Relevance
“…Now that the concentration gradient created by glomerular filtration has been quantified as a 5 mW work investment, we know the maximum quantity of work that can be done with the concentration gradient is 5 mW. The concentration gradient between the efferent blood and the filtrate could thus possibly be used to drive the recovery of filtrate later in the system, as discussed by Letts et al [ 16 ].…”
Section: Discussionmentioning
confidence: 99%
“…Now that the concentration gradient created by glomerular filtration has been quantified as a 5 mW work investment, we know the maximum quantity of work that can be done with the concentration gradient is 5 mW. The concentration gradient between the efferent blood and the filtrate could thus possibly be used to drive the recovery of filtrate later in the system, as discussed by Letts et al [ 16 ].…”
Section: Discussionmentioning
confidence: 99%