Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions.
Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes,
CNTNAP2 and
NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis.
Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with
CNTNAP2 or
NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association.
Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in
CNTNAP2 or
NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome.
Stage 1 report:
http://dx.doi.org/10.12688/wellcomeopenres.13828.2