2013
DOI: 10.5897/ajb11.3157
|View full text |Cite
|
Sign up to set email alerts
|

Genetic analysis of wild and cultivated germplasm of pigeonpea using random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) markers

Abstract: The reliability of the quantification of genetic diversity using only one type of marker has been questioned as compared to the combined use of different markers. To compare the efficiency of the use of single versus multiple markers, the genetic diversity was quantified among 12 diverse pigeonpea germplasm comprised of eight wild and four cultivated using both random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers, and how well these two types of markers discriminated the diverse pig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 30 publications
0
1
0
Order By: Relevance
“…A high level of genetic variation is observed between and within species due to differences in the number of tandem repeating units at a locus which produces a highly polymorphic banding pattern [10] and is detected by the Polymerase Chain Reaction (PCR) using locus specific flanking primers [11]. Molecular markers are widely recognized as a tool in generating linkage maps [12] as they define specific locations in the genome unambiguously [13,14]. …”
Section: Introductionmentioning
confidence: 99%
“…A high level of genetic variation is observed between and within species due to differences in the number of tandem repeating units at a locus which produces a highly polymorphic banding pattern [10] and is detected by the Polymerase Chain Reaction (PCR) using locus specific flanking primers [11]. Molecular markers are widely recognized as a tool in generating linkage maps [12] as they define specific locations in the genome unambiguously [13,14]. …”
Section: Introductionmentioning
confidence: 99%