BackgroundNeoplastic cells harbor both hypomethylated and hypermethylated regions of
DNA. Whereas hypomethylation is found mainly in repeat sequences, regional
hypermethylation has been linked to the transcriptional silencing of certain
tumor suppressor genes. We attempted to search for candidate genes involved
in breast/prostate carcinogenesis, using the criteria that they should be
expressed in primary cultures of normal breast/prostate epithelial cells but
are frequently downregulated in breast/prostate cancer cell lines and that
their promoters are hypermethylated.Methodology/Principal FindingsWe identified several dozens of candidates among 194 homeobox and related
genes using Systematic Multiplex RT-PCR and among 23,000 known genes and
23,000 other expressed sequences in the human genome by DNA microarray
hybridization. An additional examination, by real-time
qRT-PCR of clinical specimens of breast cancer, further narrowed the list of
the candidates. Among them, the most frequently downregulated genes in
tumors were NP_775756 and ZNF537, from the homeobox gene search and the
genome-wide search, respectively. To our surprise, we later discovered that
these genes belong to the same gene family, the 3-member Teashirt family,
bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the
methylation status of their gene promoters. The TSHZ3 gene promoter was
found to be methylated in all the breast/prostate cancer cell lines and some
of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter,
on the other hand, was unmethylated except for the MDA-MB-231 breast cancer
cell line. The TSHZ1 gene was always expressed, and its promoter was
unmethylated in all cases.Conclusions/SignificanceTSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for
novel tumor suppressor genes. Expression of both genes is downregulated.
However, differential promoter methylation suggests the existence of
distinctive mechanisms of transcriptional inactivation for these genes.