2013
DOI: 10.1134/s1063773713090041
|View full text |Cite
|
Sign up to set email alerts
|

Gamma-ray bursts and the production of cosmogenic radionuclides in the Earth’s atmosphere

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

2
41
0

Year Published

2014
2014
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 19 publications
(43 citation statements)
references
References 21 publications
2
41
0
Order By: Relevance
“…commonly$between$10 46 $-$10 49 $erg$ (Povinec$&$Tokar$1970;$Miyake$et#al.#2012;$ Melott$ et# al.$ 2015;$ Güttler$ et# al.# 2015).$ A$ further$ complication$ is$ that$ SNe$ may$ emit$γPrays$isotropically$or$in$a$highly$collimated$fashion,$making$estimation$of$ their$impact$on$Earth$even$more$difficult.$$ $ Damon$et#al.$(1995)$claimed$that$a$rise$in$atmospheric$ 14 C$levels$around$1006$CE$ was$ attributable$ to$ the$ wellPattested$ Type$ 1a$ supernova$ at$ this$ time,$ denoted$ SN1006$ (supernova$ in$ the$ year$ 1006$ CE).$ Their$ study$ comprised$ 75$ conventional$ radiocarbon$ measurements$ on$ annual$ treePrings$ between$ 1000$ -$ 1010$ CE.$ The$ observed$ rise$ in$ 14 C$ (~$ 6$ ‰)$ actually$ peaked$ some$ 2$ -$ 3$ years$ after$ the$ star$ was$ first$ documented$ (see$ Table$ 1).$ Whilst$ this$ offset$ was$ perplexing$to$the$authors,$it$concurs$well$with$recent$modelling$of$ 14 C$transport$ through$the$stratosphere$and$troposphere $(Pavlov#et#al.$2013;$Levin$et#al.#2010;$ Güttler# et# al.# 2015).$ Only$ one$ attempt$ has$ since$ been$ made$ to$ replicate$ these$ findings,$ and$ it$ could$ not$ discern$ any$ significant$ uplift$ around$ 1006$ CE$ (see $ Menjo$ et# al.$ 2005).$ The$ study$ also$ failed$ to$ detect$ SN1054,$ the$ explosion$ that$ generated$the$Crab$Nebula.$Indeed,$the$authors$doubted$whether$any$historical$ SNe$ was$ energetic$ enough$ to$ be$ visible$ in$ the$ 14 C$ record,$ especially$ given$ the$ ebbs$and$flows$of$the$Schwabe$cycle$ (Menjo$et#al.$2005).$ $ Attention$ recently$ returned$ to$ this$ issue$ after$ Miyake$ et# al.$ (2012)$ reported$ a$ rapid$ increase$ in$ atmospheric$ 14 C$ levels$ in$ Japanese$ treePrings$ between$ 774$ -$ 775$ CE.$ The$ singlePyear$ anomaly$ was$ of$ unprecedented$ magnitude$ (~$ 12$ ‰).$$ Just$one$year$later,$the$same$team$reported$very$similar$data$for$the$years$993$-$ 994$ CE$ (Miyake$ et# al.$ 2013).$ Importantly,$ the$ uplifts$ were$ only$ apparent$ when$ annual$sequences$of$treePrings$were$measured,$as$opposed$to$the$more$common$ practice$ of$ analysing$ decadal$ blocks$ (see$ Figure$ 1). $ Furthermore,$ it$ has$ since$ been$ established$ that$ the$ anomalies$ were$ globally$ synchronous$ and$ approximately$ uniform$ in$ magnitude.$ The$ 775$ CE$ spike$ has$ already$ been$ uncovered$in$dendrochronological$archives$from$Germany$ (Usoskin$et#al.$2013),$ the$ USA$ and$ Russia$ (Jull$ et# al.$ 2014),$ and$ New$ Zealand$ (Güttler$ et# al.$ 2015).$ Henceforth,$ these$ singlePyear$ spikes$ in$ 14 C$ concentration$ will$ be$ referred$ to$ as$ Miyake#Events.$$ $ In$addition$to$their$unprecedented$abruptness$and$scale,$Miyake$Events$are$also$ unique$because$they$represent$significant$increases$in$ 14 C.$A$myriad$of$geological$ and$ oceanographic$ processes$ can$ drive$ depletions,$ but$ no$ terrestrial$ process$ -$ prior$ to$ the$ nuclear$ age$-$could$be$responsible$for$such$sharp$enrichments.$On$ this$ basis,$ as$ well$ as$ ...…”
mentioning
confidence: 74%
See 1 more Smart Citation
“…commonly$between$10 46 $-$10 49 $erg$ (Povinec$&$Tokar$1970;$Miyake$et#al.#2012;$ Melott$ et# al.$ 2015;$ Güttler$ et# al.# 2015).$ A$ further$ complication$ is$ that$ SNe$ may$ emit$γPrays$isotropically$or$in$a$highly$collimated$fashion,$making$estimation$of$ their$impact$on$Earth$even$more$difficult.$$ $ Damon$et#al.$(1995)$claimed$that$a$rise$in$atmospheric$ 14 C$levels$around$1006$CE$ was$ attributable$ to$ the$ wellPattested$ Type$ 1a$ supernova$ at$ this$ time,$ denoted$ SN1006$ (supernova$ in$ the$ year$ 1006$ CE).$ Their$ study$ comprised$ 75$ conventional$ radiocarbon$ measurements$ on$ annual$ treePrings$ between$ 1000$ -$ 1010$ CE.$ The$ observed$ rise$ in$ 14 C$ (~$ 6$ ‰)$ actually$ peaked$ some$ 2$ -$ 3$ years$ after$ the$ star$ was$ first$ documented$ (see$ Table$ 1).$ Whilst$ this$ offset$ was$ perplexing$to$the$authors,$it$concurs$well$with$recent$modelling$of$ 14 C$transport$ through$the$stratosphere$and$troposphere $(Pavlov#et#al.$2013;$Levin$et#al.#2010;$ Güttler# et# al.# 2015).$ Only$ one$ attempt$ has$ since$ been$ made$ to$ replicate$ these$ findings,$ and$ it$ could$ not$ discern$ any$ significant$ uplift$ around$ 1006$ CE$ (see $ Menjo$ et# al.$ 2005).$ The$ study$ also$ failed$ to$ detect$ SN1054,$ the$ explosion$ that$ generated$the$Crab$Nebula.$Indeed,$the$authors$doubted$whether$any$historical$ SNe$ was$ energetic$ enough$ to$ be$ visible$ in$ the$ 14 C$ record,$ especially$ given$ the$ ebbs$and$flows$of$the$Schwabe$cycle$ (Menjo$et#al.$2005).$ $ Attention$ recently$ returned$ to$ this$ issue$ after$ Miyake$ et# al.$ (2012)$ reported$ a$ rapid$ increase$ in$ atmospheric$ 14 C$ levels$ in$ Japanese$ treePrings$ between$ 774$ -$ 775$ CE.$ The$ singlePyear$ anomaly$ was$ of$ unprecedented$ magnitude$ (~$ 12$ ‰).$$ Just$one$year$later,$the$same$team$reported$very$similar$data$for$the$years$993$-$ 994$ CE$ (Miyake$ et# al.$ 2013).$ Importantly,$ the$ uplifts$ were$ only$ apparent$ when$ annual$sequences$of$treePrings$were$measured,$as$opposed$to$the$more$common$ practice$ of$ analysing$ decadal$ blocks$ (see$ Figure$ 1). $ Furthermore,$ it$ has$ since$ been$ established$ that$ the$ anomalies$ were$ globally$ synchronous$ and$ approximately$ uniform$ in$ magnitude.$ The$ 775$ CE$ spike$ has$ already$ been$ uncovered$in$dendrochronological$archives$from$Germany$ (Usoskin$et#al.$2013),$ the$ USA$ and$ Russia$ (Jull$ et# al.$ 2014),$ and$ New$ Zealand$ (Güttler$ et# al.$ 2015).$ Henceforth,$ these$ singlePyear$ spikes$ in$ 14 C$ concentration$ will$ be$ referred$ to$ as$ Miyake#Events.$$ $ In$addition$to$their$unprecedented$abruptness$and$scale,$Miyake$Events$are$also$ unique$because$they$represent$significant$increases$in$ 14 C.$A$myriad$of$geological$ and$ oceanographic$ processes$ can$ drive$ depletions,$ but$ no$ terrestrial$ process$ -$ prior$ to$ the$ nuclear$ age$-$could$be$responsible$for$such$sharp$enrichments.$On$ this$ basis,$ as$ well$ as$ ...…”
mentioning
confidence: 74%
“…$ Furthermore,$ it$ has$ since$ been$ established$ that$ the$ anomalies$ were$ globally$ synchronous$ and$ approximately$ uniform$ in$ magnitude.$ The$ 775$ CE$ spike$ has$ already$ been$ uncovered$in$dendrochronological$archives$from$Germany$ (Usoskin$et#al.$2013),$ the$ USA$ and$ Russia$ (Jull$ et# al.$ 2014),$ and$ New$ Zealand$ (Güttler$ et# al.$ 2015).$ Henceforth,$ these$ singlePyear$ spikes$ in$ 14 C$ concentration$ will$ be$ referred$ to$ as$ Miyake#Events.$$ $ In$addition$to$their$unprecedented$abruptness$and$scale,$Miyake$Events$are$also$ unique$because$they$represent$significant$increases$in$ 14 C.$A$myriad$of$geological$ and$ oceanographic$ processes$ can$ drive$ depletions,$ but$ no$ terrestrial$ process$ -$ prior$ to$ the$ nuclear$ age$-$could$be$responsible$for$such$sharp$enrichments.$On$ this$ basis,$ as$ well$ as$ their$ global$ impact,$ it$ was$ deduced$ that$ the$ spikes$ must$ have$ been$ the$ result$ of$ intense$ pulses$ of$ radiation$ from$ space.$ At$ first,$ the$ sun$ was$ not$ considered$ a$ likely$ cause,$ as$ it$ was$ not$ thought$ capable$ of$ emitting$ radiation$ of$ the$ required$ energy,$ so$ supernovae$ and$ other$ γPray$ sources$ were$ preferred$ (Miyake$ et# al.$ 2012;$ Pavlov$ et# al.$ 2013;$ Hambaryan$ $ &$ Neühauser$ 2013).$However,$the$consensus$now$is$that$intense$Solar$Energetic$Particle$(SEP)$ events$ were$ indeed$ responsible$ (Melott$ &$ Thomas$ 2012;$ Thomas$ et# al.$ 2013;$ Usoskin$et#al.$2013;$Güttler$et#al.$2015;$Mekhaldi$et#al.$2015).$SEPs$either$arise$ because$ of$ extreme$ solar$ flares$ or$ Interplanetary$ Coronal$ Mass$ Ejections$ (ICMEs).$ A$ supernova$ origin$ has$ now$ effectively$ been$ discounted,$ on$ two$ main$ grounds.$ Firstly,$ no$ historical$ observations$ exist$ for$ supernovae$ around$ 775$ or$ 994$ CE;$ although,$ the$ expected$ galactic$ SN$ rate$ of$~$ 1$ -$ 2$ per$ century$ does$ suggest$that$many$past$events$have$gone$undetected$ (Tammann$et#al.$1994).$As$ is$ shown$ in$ Table$ 1,$ only$ a$ handful$ of$ observations$ do$ exist,$ and$ none$ of$ them$ pertain$ to$ the$ night$ sky$ of$ the$ Southern$ Hemisphere.$ $ Secondly,$ no$ Galactic$ supernova$remnant$can$be$attributed$to$an$event$at$either$of$these$dates.$$ The$aim$of$this$study$is$to$establish$categorically$whether$any$historical$SNe$can$ be$detected$in$the$past$atmospheric$ 14 C$record.$$ * Methods* We$ combined$ new$ and$ existing$ 14 C$ measurements$ on$ annual$ treePrings$ that$ traversed$the$following$historical$astronomical$records.$ Figure$1.$If$anything,$a$levelling$or$gradual$decrease$in$atmospheric$ 14 C$levels$can$ be$discerned$in$the$data$for$the$ten$years$following$each$historical$observation.$It$ is$ important$ to$ emphasise$ that$ the$ observation$ dates$ of$ the$ supernovae$ in$ the$ second$ millennium$ CE$ are$ exactly$ known,$ although$ the$ evidence$ pertaining$ to$ the$ earlier$ events$ is$ more$ equivocal.$ Thus,$ any$ rise$ in$ 14 C,$ which$ predates# the$ historical$observation,$as$can$be$seen$in$the$profile$relating$to$SN1054,$cannot$be$ causally$ linked$ with$ the$ stellar$ explosi...…”
mentioning
confidence: 99%
“…Miyake et al [2012] originally proposed two explanations: a supernova explosion or a solar proton event (SPE). Other proposed explanations include a cometary impact on the Sun [Eichler and Mordecai, 2012] and a gamma ray burst (GRB) [Hambaryan and Neuhäuser, 2013;Pavlov et al, 2013], but such sources are now considered less likely, in part because the 775 C.E. Liu et al [2014] suggested a cometary impact on the Earth's atmosphere as the explanation of the first cosmic ray event, but this is considered unlikely due to the size of the comet required to produce the amount of excess radiocarbon and an erroneous interpretation of a historical text describing a comet in 773 C.E.…”
Section: Introductionmentioning
confidence: 99%
“…Subsequently, Allen [2012] argued in favor of a supernova explosion, but since no remnant of such an explosion has been observed, it is not considered a very likely source of the cosmic ray events [Miyake et al, 2012]. Also, GRBs would not produce the 10 Be anomalies observed in ice cores from Greenland and Antarctica, and they are consequently an unlikely source of the cosmic ray events [Hambaryan and Neuhäuser, 2013;Pavlov et al, 2013]. [Overholt and Melott, 2013;Usoskin and Kovaltsov, 2014;Chapman et al, 2014].…”
Section: Introductionmentioning
confidence: 99%
“…Geophysical Research Letters Thereby, with the above magnitudes of R flash , n str , _ N cosm 14 6 C À Á , δ, and σ abs /σ 14 for the initial and moderated neutron spectra, numbers of neutrons per lightning stroke N n1 required to account for 10% (k = 0.1), and a half (k = 0.5) of the observed RPR, at different areas of the globe varies as given in Table 1. Note that the fraction k = 0.1 corresponds to the observed fluctuations in the 14 6 C production (Dorman, 2004, section 17;Lingenfelter, 1963;Pavlov et al, 2013;Rakowski et al, 2015;Suess, 1965;Usoskin et al, 2013).…”
Section: 1002/2017gl075131mentioning
confidence: 96%