2022
DOI: 10.1002/jor.25427
|View full text |Cite
|
Sign up to set email alerts
|

Gait biomechanics after proximal femoral nailing of intertrochanteric fractures

Abstract: Proximal femur fractures in the elderly are associated with significant loss of independence, mobility, and quality of life. This prospective study aimed to: (1) investigate gait biomechanics in intertrochanteric fracture (ITF) patients (A1 and A2 AO/OTA) managed via femoral nailing at 6 weeks and 6 months postoperative and how these compared with similarly aged elderly controls; and (2) investigate whether femoral offset shortening (FOS) and lateral lag screw protrusion (LSP) were associated with changes in g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 54 publications
0
1
0
Order By: Relevance
“…Similarly, the time differences for stance and swing times were centered around a zero-mean difference for all cohorts, with only the mean differences for the stance and swing time of the PFF cohort being a bit larger (0.07 s and −0.07 s for the stance and swing time, respectively). The mean differences for stance and swing times in the PFF cohort may in part be explained by the altered gait pattern that is observed in this cohort ( 93 , 94 ). Nonetheless, the time agreement for the stride-specific temporal gait parameters derived from the DL algorithm and the reference system was in a similar range as those communicated before for a comparable DL-based approach that evaluated results only from straight-line walking in a supervised laboratory setting ( 55 ).…”
Section: Discussionmentioning
confidence: 95%
“…Similarly, the time differences for stance and swing times were centered around a zero-mean difference for all cohorts, with only the mean differences for the stance and swing time of the PFF cohort being a bit larger (0.07 s and −0.07 s for the stance and swing time, respectively). The mean differences for stance and swing times in the PFF cohort may in part be explained by the altered gait pattern that is observed in this cohort ( 93 , 94 ). Nonetheless, the time agreement for the stride-specific temporal gait parameters derived from the DL algorithm and the reference system was in a similar range as those communicated before for a comparable DL-based approach that evaluated results only from straight-line walking in a supervised laboratory setting ( 55 ).…”
Section: Discussionmentioning
confidence: 95%