Membrane distillation is a process that utilizes differences in vapor pressure to permeate water through a macro-porous membrane and reject other non-volatile constituents present in the influent water. This review considers the fundamental heat and mass transfer processes in membrane distillation, recent advances in membrane technology, module configurations, and the applications and economics of membrane distillation, and identifies areas that may lead to technological improvements in membrane distillation as well as the application characteristics required for commercial deployment.
Keywordsa function of temperature, vapor pressure, and of the gas molecular mass K 0 membrane characteristic defined by Equation (9) Kn Knudsen number K(T) a function of temperature and molecular weight of the gas l mean free path of the molecules l m distance between parallel spacer fibres (m) LEP Limit Entry Pressure (kPa) M molecular mass (g/mol) M w molecular weights of water (g/mol) M a molecular weights of air (g/mol) n number of CNTs per unit cross section in bucky-paper P pressure in the air gap (kPa) half time to reach the maximum intensity-laser flash technique (s) t proportion of conductive heat (balance due to evaporative heat) loss through the membrane T mean temperature in the pores (K)