IntroductionCellular communication systems provide wireless coverage to mobile users across potentially large geographical areas, where base stations (BSs) provide service to users as interfaces to the public telephone network. Cellular communication is based on the principle of dividing a large geographical area into cells which are serviced by separate BSs. Rather than covering a large area by using a single, high-powered BS, cellular systems employ many lower-powered BSs each of which covers a small area. This allows for the reuse of the frequency bands in cells which are not too close to each other, increasing mobile user capacity with a limited spectrum allocation.Traditional narrowband cellular systems require the cochannel interference level to be low. Careful design of frequency reuse among cells is then crucial to maintain cochannel interference at the required low level. The price of low interference, however, is a low frequency reuse factor: only a small portion of the system frequency band can be used in each cell. More recent wideband approaches allow full frequency reuse in each cell, but the cost of that is increased intercell interference. In both approaches, the capacity of a cell in a cellular network, with six surrounding cells, is much less than that of a single cell operating in an intercell interference-free environment. In this chapter, we survey an approach that allows the cell with neighbors to achieve essentially the same capacity as the interference-free cell.In a conventional cellular system, each mobile user is serviced by a single BS, except for the soft-handoff case -a temporary mode of operation where the mobile is moving between cells and is serviced by two base stations. A contrasting idea is to require each mobile station to be serviced by all BSs that are within its reception range. In this approach all the BSs in the cellular network are components of a single transceiver with distributed antennas, an approach known as "network multiple-input multiple-output (MIMO)."Cooperative Cellular Wireless Networks, eds.