Dense blend membranes were prepared by blending hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(ethyleneimine) (PEI), which were then crosslinked by glutaraldehyde (GA) in a mixture of solvents under the catalysis of hydrochloric acid (HCl) for the dehydration of tetrahydrofuran (THF) by pervaporation. The effect of experimental parameters such as feed water concentration, permeate pressure, and membrane thicknesses on permeate parameters, i.e., flux and selectivity were determined with feed water concentration less than 40 wt %. The membranes were found to have good potential for breaking the azeotrope of 94 wt % THF with a flux of 1.072 and 0.376 kg/m 2 h for plane PVA/PEI and crosslinked PVA/PEI blend membrane, which exhibited high selectivity of 156 and 579 respectively. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas flux decreased correspondingly. High permeate pressure causes a reduction in both flux and selectivity. These effects were clearly elucidated with the aid of the known relationship among plasticization effect, degree of swelling, permeate pressure, and feed water concentration. These blend membranes were also subjected to sorption studies to evaluate the extent of interaction and degree of swelling in pure as well as binary feed mixtures. Further ion exchange capacity studies were carried out for all the crosslinked and uncrosslinked membranes to determine the total number of interacting groups present in the membranes.