2013
DOI: 10.1080/14786435.2013.800652
|View full text |Cite
|
Sign up to set email alerts
|

From spherical circle coverings to the roundest polyhedra

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
11
0

Year Published

2014
2014
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(11 citation statements)
references
References 11 publications
0
11
0
Order By: Relevance
“…In a recent paper [10] the authors presented a numerical iterative method for the surface minimization of convex polyhedra circumscribed about the unit sphere with given number of faces and topology (edge graph). The main point of the method is to regard the surface area of a trivalent polyhedron with n faces as the potential energy of a mechanical system to minimize and to create the associated (dual) polyhedron whose faces are considered as triangle elements.…”
Section: Methodsmentioning
confidence: 99%
See 4 more Smart Citations
“…In a recent paper [10] the authors presented a numerical iterative method for the surface minimization of convex polyhedra circumscribed about the unit sphere with given number of faces and topology (edge graph). The main point of the method is to regard the surface area of a trivalent polyhedron with n faces as the potential energy of a mechanical system to minimize and to create the associated (dual) polyhedron whose faces are considered as triangle elements.…”
Section: Methodsmentioning
confidence: 99%
“…Mutoh [9] also dealt with polyhedra with minimum volume circumscribed about the unit sphere, and by using a computer-aided search, provided a series of conjectured optimal polyhedra with the number of faces ranging between 4 and 30. In an earlier paper [10] the authors pointed out that in some cases the isoperimetric problem for n faces and the problem of the minimum covering of a sphere by n equal circles have the same proven or conjectured solution (the points of tangency of the faces and the centres of the circles are identical). In some cases, the obtained polyhedra are only topologically identical.…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations