2013
DOI: 10.15407/ujpe58.11.1033
|View full text |Cite
|
Sign up to set email alerts
|

From Bialgebras to Operads. Quantum Line and Cooperad of Correlation Functions

Abstract: A q-line is a simple example of a braided Hopf algebra. This is just an algebra of polynomials kq[z] with primitive generator and q-deformed statistics.The (co)action of a q-line on an algebra is a q-derivation. We construct an operad and a cooperad from a bialgebra. In the case of a q-line, this construction is related to the cooperad of correlation functions of I. Kriz et al., which describes vertex algebras.Modules over the factor-algebra kq[z]/(z N ) are N -complexes. We consider a homotopical category of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?