Summary. Exploding growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system selfassembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.