2018
DOI: 10.3390/en11010071
|View full text |Cite|
|
Sign up to set email alerts
|

Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine

Abstract: Abstract:In direct torque control (DTC) of the brushless doubly fed machine (BDFM) system, the inverter switching voltage vectors cannot always meet the control requirements, and the torque will lose control. For the losing control problem, this paper presents a solution of indirectly controlling torque by controlling the angle difference between the power motor (PM) stator flux and the control motor (CM) stator flux (called as the flux-angle-difference). Firstly, based on the CM static coordinate system BDFM … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 24 publications
(29 reference statements)
0
2
0
Order By: Relevance
“…DFTC is well-known for its robust strategy, simple algorithm, and fast-flux/torque response, which requires no modulation techniques, current control, or coordinate transformation [44]. This method has been applied to several electric machines such as induction motor [45], a brushless DC electric motor [46], interior permanent magnet synchronous motor [47], five-phase induction motor [48], brushless doubly-fed machine [49,50], permanent magnet synchronous motor (PMSM) [51], six-phase induction motor [52], and five-phase PMSM [53,54]. In [55], the DFTC control scheme reduced the electromagnetic torque, stator current, and rotor flux compared to the FOC method.…”
Section: Dftc-tosmc Control Of the Ag-based Srwpmentioning
confidence: 99%
“…DFTC is well-known for its robust strategy, simple algorithm, and fast-flux/torque response, which requires no modulation techniques, current control, or coordinate transformation [44]. This method has been applied to several electric machines such as induction motor [45], a brushless DC electric motor [46], interior permanent magnet synchronous motor [47], five-phase induction motor [48], brushless doubly-fed machine [49,50], permanent magnet synchronous motor (PMSM) [51], six-phase induction motor [52], and five-phase PMSM [53,54]. In [55], the DFTC control scheme reduced the electromagnetic torque, stator current, and rotor flux compared to the FOC method.…”
Section: Dftc-tosmc Control Of the Ag-based Srwpmentioning
confidence: 99%
“…The authors wish to make the following corrections to this paper [1] due to an accidental mistake when uploading the last manuscript:…”
mentioning
confidence: 99%