2008
DOI: 10.1007/s00419-008-0244-3
|View full text |Cite
|
Sign up to set email alerts
|

Fluid–solid interaction finite element modeling of a kinetically driven growth instability in stressed solids

Abstract: The kinetically driven growth instability in stressed solids has been a subject of recent investigation as there is an increasing interest in the effects of non-hydrostatic stresses on crystal growth processes. Recent experimental and modeling work using advanced numerical methods such as boundary element and level set methods have demonstrated that the effect of stress on the solid phase epitaxy (SPE) growth of crystalline silicon from the amorphous phase is responsible for the roughening of its amorphous-cry… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?