2017
DOI: 10.1007/s12034-017-1396-y
|View full text |Cite
|
Sign up to set email alerts
|

Flexible composite via rapid titania coating by microwave-assisted hydrothermal synthesis

Abstract: The aim of this work was to prepare a flexible nanocomposite from ultra-fine titanium oxide (TiO 2) growth on carbon fibre via microwave-assisted hydrothermal synthesis (MHS) and to evaluate its photocatalytic properties. The TiO 2 nanoparticles were directly grown on the carbon fibre (CF). Thus, a study comparing the conventional titania coating vs. the MHS were performed. The significant layer interaction as a function of the coating method on the visible and dark dye photodegradation performance was observe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…Semiconductor photocatalysis has recently attracted great attentions for environmental remediation and purification through advanced oxidation processes [1,2]. Heterogeneous semiconductor photocatalysis was reported as a suitable approach to detoxification from both industrial and biological pollutants in many researches [3,4]. Among the semiconductors investigated, anatase TiO2 is one of the most commonly used materials for photocatalytic degradation of chemical and microbiological pollutants due to its non-toxic nature, low cost, abundance, UV-driven high activity, photo and thermal stability [5,6].…”
Section: Introductionmentioning
confidence: 99%
“…Semiconductor photocatalysis has recently attracted great attentions for environmental remediation and purification through advanced oxidation processes [1,2]. Heterogeneous semiconductor photocatalysis was reported as a suitable approach to detoxification from both industrial and biological pollutants in many researches [3,4]. Among the semiconductors investigated, anatase TiO2 is one of the most commonly used materials for photocatalytic degradation of chemical and microbiological pollutants due to its non-toxic nature, low cost, abundance, UV-driven high activity, photo and thermal stability [5,6].…”
Section: Introductionmentioning
confidence: 99%