2015
DOI: 10.7314/apjcp.2015.16.2.465
|View full text |Cite
|
Sign up to set email alerts
|

Flavonoids from Orostachys Japonicus A. Berger Induces Caspase-dependent Apoptosis at Least Partly through Activation of p38 MAPK Pathway in U937 Human Leukemic Cells

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0

Year Published

2015
2015
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 15 publications
(15 citation statements)
references
References 20 publications
(21 reference statements)
0
15
0
Order By: Relevance
“…In previous studies, Icariside II sensitizes U937 cells to apoptosis by targeting STAT3-related signaling ( 35 ). and flavonoids extracted from Orostachys japonicus A. Berger (FEOJ) triggered caspase-dependent apoptosis of U937 cells through p38 MAPK signaling pathway ( 21 ). Further investigation focusing on the precise molecular mechanisms by which PTFC trigger U937 cell apoptosis should yield interesting results.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…In previous studies, Icariside II sensitizes U937 cells to apoptosis by targeting STAT3-related signaling ( 35 ). and flavonoids extracted from Orostachys japonicus A. Berger (FEOJ) triggered caspase-dependent apoptosis of U937 cells through p38 MAPK signaling pathway ( 21 ). Further investigation focusing on the precise molecular mechanisms by which PTFC trigger U937 cell apoptosis should yield interesting results.…”
Section: Discussionmentioning
confidence: 99%
“…Flavonoids are naturally-occurring non-toxic material found widely in the plant kingdom, most of which have a wide range of biological activities. Exposure to flavonoids seems to reduce the risk for developing cancers ( 15 21 ). However, not much is known regarding the anti-cancer effects of pure total flavonoid compounds (PTFCs) extracted from the peel of Citrus paradisi Macfad, and the molecular mechanisms of its action are poorly understood in human cancer cells.…”
Section: Introductionmentioning
confidence: 99%
“…In the below (Table ), we have cited some of the very noteworthy flavonoids, such as quercetin (X. X. Chen et al, ; G. L. Russo et al, ), luteolin (Sak et al, ), gardenin B (Cabrera et al, ), hespertin and fisetin (Adan & Baran, ), myricetin (Ko et al, ), wogonin (H. W. Zhang et al, ), flavopiridol (Bright et al, ), vitexin inspired (Ling et al, ), sophoraflavanone G (Z. Y. Li et al, ), flavokawin B (Tang et al, ), kaempferol (K. Y. Kim et al, ), chrysin (Zaric et al, ), butein (Woo et al, ), naringenin (R. F. Li et al, ), catechin (L. Zhang et al, ), genistein (I. G. Kim et al, ), apigenin (Gonzalez‐Mejia et al, ; Jayasooriya et al, ), dorsmanin F (Kuete et al, ), astilbin (H. W. Yi et al, ), EGCG (Annabi et al, ; J. H. Jung et al, ), icaraside (Kang et al, ), phloridzin (Arumuggam et al, ), isochamaejasmin (S. D. Zhang et al, ), MF derivatives (Wudtiwai et al, ), icaritin (Q. Li et al, ), FEOJ (W. S. Lee et al, ), casticin (Kikuchi et al, ), chalcone (Mori et al, ), deguelin (S. Yi et al, ), morin (C. Park et al, ), medicarpin (Gatouillat et al, ), Antho 50 (Alhosin et al, ), rotenone (Estrella‐Parra et al, ), glabridin (H. L. Huang et al, ), hispidulin (H. Gao et al, ), oroxylin A (Hui et al, ), rhamnazin (Philchenkov & Zavelevych, ), wogonoside (Y. Chen et al, ), 7,8‐dihydroxyflavone hydrate (7,8‐DHF; H. Y. Park et al, ), panduratin A (Choi, Kim, & Hwang, ), silibinin (Pesakhov, Khanin, Studzinski, & Danilenko, ), galangin (Tolomeo et al, ), 2′‐nitroflavone (Cardenas, Blank, Marder, & Roguin, ), propolis (Eom, Lee, Yoon, & Yoo, ), tomentodiplacone B (Kollar, Barta, Zavalova, Smejkal, & Hampl, ), tamarixetin (Nicolini et al, ), phloretin (Kobori, Iwashita, Shinmoto, & Tsushida, ), a...…”
Section: Flavonoids Functional Mechanisms In Leukemia Cellsmentioning
confidence: 99%
“…Li et al, 2016), flavokawin B , kaempferol (K. Y. Kim et al, 2016), chrysin (Zaric et al, 2015), butein (Woo et al, 2016), naringenin (R. F. Li et al, 2015), catechin (L. Zhang et al, 2014), genistein (I. G. Kim et al, 2014), apigenin (Gonzalez-Mejia et al, 2010;Jayasooriya et al, 2012), dorsmanin F (Kuete et al, 2015), astilbin (H. W. Yi et al, 2008), EGCG (Annabi et al, 2007;, icaraside ), phloridzin (Arumuggam et al, 2017), isochamaejasmin (S. D. Zhang et al, 2015, MF derivatives (Wudtiwai et al, 2011), icaritin (Q. Li et al, 2013, FEOJ (W. S. Lee et al, 2015), casticin (Kikuchi et al, 2013), chalcone , deguelin (S. Yi et al, 2015), morin (C. Park et al, 2014), medicarpin (Gatouillat et al, 2015), Antho 50 (Alhosin et al, 2015), rotenone (Estrella-Parra et al, 2014), glabridin (H. L. , hispidulin (H. , oroxylin A (Hui et al, 2016), rhamnazin (Philchenkov & Zavelevych, 2015), wogonoside (Y. Chen et al, 2013) (Nicolini et al, 2014), phloretin (Kobori, Iwashita, Shinmoto, & Tsushida, 1999), and xanthohumol (Lust et al, 2005) with their chief working mechanisms in leukemia cells.…”
Section: Inhibition Of Survival Involved Signaling Pathwaysmentioning
confidence: 99%
“…Orostachys japonicus (O. japonicus) extracts have shown various biological activities including anti-inflammatory 20 , neuroprotective 21 , anti-ulcerative 22 , anti-oxidant 23 , and anti-tumor effects [24][25][26] . Particularly, it has been recognized as a potential anti-tumor treatment for a variety of tumor cells in Korea.…”
Section: Introductionmentioning
confidence: 99%