2024
DOI: 10.1021/acs.jpcc.3c07407
|View full text |Cite
|
Sign up to set email alerts
|

First-Principles Performance Prediction of High Explosives Enabled by Machine Learning

Beth A. Lindquist,
Ryan B. Jadrich,
Jeffery A. Leiding

Abstract: Accurate modeling of the behavior of high-explosive (HE) materials requires knowledge of the equation of state (EOS) for both the reactant and the product states of the material. Historically, EOS models have been calibrated to reproduce experimental data, but there is growing interest in first-principles predictions of HE behavior. The product state is particularly challenging to model because of the wide range of density and temperature conditions that are relevant as well as the requirement to include chemi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 88 publications
(128 reference statements)
0
0
0
Order By: Relevance
“…In JPC C , the special issue papers describe ML and other data science techniques utilized in the scope of nanoparticles and nanostructures; surface and interface processes; electron, ion, and thermal transport; optic, electronic, and optoelectronic materials; and catalysts and catalysis; as well as energy conversion and storage materials and processes. As in the Parts A and B, a number of articles directly address either the development of new methods or the use of ML methods in new ways. Several contributions relate to methods in the use or development of so-called machine learning potentials (MLP) or machine learning interaction potentials (MLIP), including a Perspective on improving these models authored by Maxson et al, as well as other contributions. Interfaces and related phenomena are addressed in several articles. Nanomaterials and their properties are also prominently featured. Another large category in JPC C includes studies that address the calculation of properties of materials for wide-ranging applications. …”
mentioning
confidence: 99%
“…In JPC C , the special issue papers describe ML and other data science techniques utilized in the scope of nanoparticles and nanostructures; surface and interface processes; electron, ion, and thermal transport; optic, electronic, and optoelectronic materials; and catalysts and catalysis; as well as energy conversion and storage materials and processes. As in the Parts A and B, a number of articles directly address either the development of new methods or the use of ML methods in new ways. Several contributions relate to methods in the use or development of so-called machine learning potentials (MLP) or machine learning interaction potentials (MLIP), including a Perspective on improving these models authored by Maxson et al, as well as other contributions. Interfaces and related phenomena are addressed in several articles. Nanomaterials and their properties are also prominently featured. Another large category in JPC C includes studies that address the calculation of properties of materials for wide-ranging applications. …”
mentioning
confidence: 99%