2013
DOI: 10.4028/www.scientific.net/amm.456.576
|View full text |Cite
|
Sign up to set email alerts
|

Finite Element Model of Human Cochlea Considering of the Helicotrema Size

Abstract: A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…Furthermore, the HLL and HAL values presented herein can be used to develop more anatomically accurate numerical models of the human cochlea. Current models have made approximations regarding the size of the helicotrema, and the detailed measurements from this study can be integrated to produce more accurate biomechanical models of the cochlear apex [21,31].…”
Section: Discussionmentioning
confidence: 99%
“…Furthermore, the HLL and HAL values presented herein can be used to develop more anatomically accurate numerical models of the human cochlea. Current models have made approximations regarding the size of the helicotrema, and the detailed measurements from this study can be integrated to produce more accurate biomechanical models of the cochlear apex [21,31].…”
Section: Discussionmentioning
confidence: 99%