2019
DOI: 10.1111/ppl.12974
|View full text |Cite
|
Sign up to set email alerts
|

Finding the fragrance genes of wintersweet

Abstract: Fragrant flowers emit a complex mixture of volatile organic compounds (VOCs) that we perceive as pleasant. While we know the chemical nature of these volatiles, the molecular traits that regulate their biosynthesis are poorly understood. In this issue, Tian et al. (2019) compare the transcriptomic and proteomic profiles of a scented genotype of wintersweet (Chimonanthus praecox) with a non‐scented one. By correlating the differential gene expression profile with the observed differences in VOC profiles, they a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 5 publications
0
1
0
Order By: Relevance
“…Studies on Ch. praecox have focused on transcriptomic and proteomic profiling throughout flower development [13,14,15,16]; fragrance gene identification [17]; floral scent emission from nectaries on the adaxial side of the innermost and middle petals [18]; separation and determination of volatile compounds [19,20], phenolic compounds [21], alkaloids and flavonoids [22,23,24], and sesquiterpenoids [25]; in vitro culture system development [26]; genetic linkage map construction [27]; simple sequence repeat (SSR) [28], expressed sequence tag (EST) [29], and amplified fragment length polymorphism (AFLP) [30] development; and ANL2 [31], CpAGL2 [32], CpAP3 [33], CpCAF1 [34], CpCZF1/2 [35], Cpcor413pm1 [36], CpEXP1 [37], CpH3 [38], CpLEA5 [39], Cplectin [29], CpNAC8 [40], CpRALF [41], CpRBL [42], FPPS [43], and G6PDH1 [44] cloning and development. Studies on Ch.…”
Section: Introductionmentioning
confidence: 99%
“…Studies on Ch. praecox have focused on transcriptomic and proteomic profiling throughout flower development [13,14,15,16]; fragrance gene identification [17]; floral scent emission from nectaries on the adaxial side of the innermost and middle petals [18]; separation and determination of volatile compounds [19,20], phenolic compounds [21], alkaloids and flavonoids [22,23,24], and sesquiterpenoids [25]; in vitro culture system development [26]; genetic linkage map construction [27]; simple sequence repeat (SSR) [28], expressed sequence tag (EST) [29], and amplified fragment length polymorphism (AFLP) [30] development; and ANL2 [31], CpAGL2 [32], CpAP3 [33], CpCAF1 [34], CpCZF1/2 [35], Cpcor413pm1 [36], CpEXP1 [37], CpH3 [38], CpLEA5 [39], Cplectin [29], CpNAC8 [40], CpRALF [41], CpRBL [42], FPPS [43], and G6PDH1 [44] cloning and development. Studies on Ch.…”
Section: Introductionmentioning
confidence: 99%
“…It is often used by landscape architects as an ornamental highlight for landscape routes and an esthetic attraction to visitors in the winter (Shen et al, 2021). Past studies of wintersweet mainly focus on its floral fragrance and drought resistance (Anirban, 2019; Tian et al, 2019b), and its acclimation to future climate conditions, such as elevated CO 2 , has not been reported. Enrichment of CO 2 typically promotes plant biomass, which dilutes the leaf nitrogen concentration in leaves and, in turn, affects photosynthetic capacity and nitrogen supply, influencing the leaf traits in the LES (Ainsworth and Long, 2021).…”
Section: Introductionmentioning
confidence: 99%