Abstract:The stable operation of a microgrid is crucial to the integration of renewable energy sources. However, with the expansion of scale in electronic devices applied in the microgrid, the interaction between voltage source converters poses a great threat to system stability. In this paper, the model of a three-source microgrid with a multi master-slave control method in islanded mode is built first of all. Two sources out of three use droop control as the main control source, and another is a subordinate one with constant power control which is also known as real and reactive power (PQ) control. Then, the small signal decoupling control model and its stability discriminant equation are established combined with "virtual impedance". To delve deeper into the interaction between converters, mutual influence of paralleled converters of two main control micro sources and their effect on system stability is explored from the perspective of control parameters. Finally, simulation and analysis are launched and the study serves as a reference for parameter setting of converters in a microgrid.