Road lighting is essential to ensure the safety and comfort of its users, especially in preventing accidents and aiding visual tasks. The monumental shift from conventional road lighting technology to light-emitting diode (LED) lighting is driven by energy efficiency, associated cost savings, and environmental concerns in the road lighting system. This study aims to investigate the performance of LED in substitution for high-pressure sodium vapour (HPSV) road lighting in Penang Bridge, Malaysia using the Data Envelopment Analysis (DEA), a frontier-based optimisation approach, by modelling energy, cost, and environment together, as none of the previous studies has included energy, cost, and environmental concerns together in one model. The LED renewable energy industry that promotes zero carbon emissions has the potential to establish an affordable, clean, and carbon-free energy system for road lighting, especially in rural areas.