This study analyzed the influence of tempering treatment temperature on the microstructural and mechanical behavior of two different powder metallurgy steels containing 0 wt. % Ni and 4 wt. % Ni. The evolution of the microstructure and the macro- and microhardness of the microstructural constituents resulting from tempering treatments conducted on the sinter-hardened materials at temperatures ranging from 160 °C to 300 °C were investigated. The role of the tempering conditions in the impact behavior was assessed using Charpy tests on V-notched and unnotched samples, tempered at 180 °C, 220 °C and 280 °C. The observed macrohardness reduction with increasing tempering temperature was related to martensite transformations. At high tempering temperatures, the remarkable loss in impact energy values was attributed to microfracture modes. The contribution of Ni-rich austenite areas in enhancing impact strength was detected.