2019
DOI: 10.1016/j.jcis.2018.09.088
|View full text |Cite
|
Sign up to set email alerts
|

Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

3
42
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 81 publications
(46 citation statements)
references
References 27 publications
3
42
0
1
Order By: Relevance
“…There are other examples where this combination of properties has been used to engineer materials for oil/water separation (Zhu et al, 2017 ; Ge et al, 2019 , 2020a ). A variety of nanomaterials have been used to create meshes (Jiang et al, 2017 ; Zhang et al, 2018a , 2019 ; Nanda et al, 2019 ; Wang et al, 2019 ; Gong et al, 2020 ), membranes (Attia et al, 2018 ; Huang et al, 2018 ; Ma et al, 2018 ; Qing et al, 2018 ; Zhao et al, 2018 ; Subramanian et al, 2019 ; Cheng et al, 2020 ), sponges (Huang et al, 2019b ; Li et al, 2019b ), and fabrics (Cheng et al, 2018 ; Chauhan et al, 2019 ; Lin et al, 2019 ; Zhou et al, 2019 ; Dan et al, 2020 ) with superhydrophobic and superoleophilic properties for oil/water separation (Ferrero et al, 2019 ; Zulfiqar et al, 2019 ; Latthe et al, 2020 ; Lin et al, 2020 ; Topuz et al, 2020 ; Zhang et al, 2020b ). Most of these materials separate oil either by filtration, absorption, or both.…”
Section: Separation Of Oil/water Mixturesmentioning
confidence: 99%
“…There are other examples where this combination of properties has been used to engineer materials for oil/water separation (Zhu et al, 2017 ; Ge et al, 2019 , 2020a ). A variety of nanomaterials have been used to create meshes (Jiang et al, 2017 ; Zhang et al, 2018a , 2019 ; Nanda et al, 2019 ; Wang et al, 2019 ; Gong et al, 2020 ), membranes (Attia et al, 2018 ; Huang et al, 2018 ; Ma et al, 2018 ; Qing et al, 2018 ; Zhao et al, 2018 ; Subramanian et al, 2019 ; Cheng et al, 2020 ), sponges (Huang et al, 2019b ; Li et al, 2019b ), and fabrics (Cheng et al, 2018 ; Chauhan et al, 2019 ; Lin et al, 2019 ; Zhou et al, 2019 ; Dan et al, 2020 ) with superhydrophobic and superoleophilic properties for oil/water separation (Ferrero et al, 2019 ; Zulfiqar et al, 2019 ; Latthe et al, 2020 ; Lin et al, 2020 ; Topuz et al, 2020 ; Zhang et al, 2020b ). Most of these materials separate oil either by filtration, absorption, or both.…”
Section: Separation Of Oil/water Mixturesmentioning
confidence: 99%
“…刻蚀修饰法是最简单的实现人工超疏水表面 的方法, 该方法通过化学湿法刻蚀 [35][36][37][38][39] 、激光刻 蚀 [40][41][42][43][44] 、机械加工处理 [45][46] [47][48] 制备超疏水涂 层, 金属试样通过阳极氧化过程构建微米/纳米级粗 糙结构, 然后采用低表能物质对其进行超疏水修饰, 最终在金属表面制得超疏水膜, 该方法获得的超疏 水涂层通常较薄且机械耐久性较差。随着研究的不 断深入, 研究者采用电镀、电化学沉积的方式 [49][50][51][52][53][54] 制备多层叠加的超疏水涂层, 该涂层有利于实现超 疏水在腐蚀防护领域的工程应用。随着电化学沉 积法的进一步发展, 研究者采用电化学纳米共沉积 法 [55] 制备超疏水涂层, 采用电化学等离子处理结合 电化学沉积法 [56] 提升超疏水涂层的机械耐久性, 以 及采用水热法结合电化学沉积法 [57][58] [59][60][61] , 为了实现大规模化、工艺简单、低成 本、可操作性强的超疏水涂层, 基于溶胶-凝胶法的 浸涂或刷涂的方式 [62][63][64][65] 受到研究者广泛的关注, 为 了进一步提高涂层与基体的结合力, 喷涂固化的方 式 [66][67][68][69][70] 得到更为广泛的应用。…”
Section: 刻蚀修饰法unclassified
“…Self-cleaning surfaces may be split into two parts, hydrophilic surfaces and hydrophobic surfaces. Due to its water-repellent properties and low adhesive surface, the water droplets roll on the surface easily in the case of hydrophobic surfaces and in turn eliminates contaminants [19][20][21].…”
Section: Introductionmentioning
confidence: 99%