Face photo-sketch matching is an important problem for law enforcement agencies in terms of identifying suspects. In this study, a new sketch-photo generation and recognition technique is proposed by using residual convolutional neural network architecture. The suggested RCNN architecture consists of 6 convolutions, 6 ReLU, 4 poolings, 2 deconvolution layers. The proposed architecture is trained with face photos and sketches. Sketches are supplied as an input to the RCNN architecture and, generated face photos are obtained as the output. Then, the generated face photos are compared with the photos of the people in the database. Structural Similarity Index (SSIM) is used to measure the pairwise similarity and the photo with the highest index score is matched. CUHK Face Sketch Database containing 188 images is tested. In the experiments, 148, 20, and 20 images are used for training, validation, and testing, respectively. Data augmentation applied to 148 training images produced 444 images. Experimental results show that the success of the training curve is 90.55% and the validation success is 91.1%. True face recognition success from generated face images with SSIM is 93.89% for CUHK Face Sketch database (CUFS) and 84.55% AR database.