2010
DOI: 10.1364/ol.35.002103
|View full text |Cite
|
Sign up to set email alerts
|

Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide

Abstract: We describe a configuration of the integrated-optic spectrometer based on Fourier-transform spectroscopy. The original source spectrum has been successfully retrieved with 20 GHz resolution by the spectrometer implemented in a silica-based planar waveguide.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
36
0
1

Year Published

2011
2011
2021
2021

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 51 publications
(37 citation statements)
references
References 7 publications
0
36
0
1
Order By: Relevance
“…[5], en la cual se sustituyen los espejos móviles por redes de difracción [6]. El concepto teórico de los SHS puede ser implementado mediante arrays de interferómetros Mach-Zehnder (Mach-Zehnder Interferometer, MZI) con diferencias crecientes de caminos ópticos [4,7,8]. El análisis completo del espectro dentro del rango espectral libre del dispositivo se realiza en una sola medida mediante análisis de Fourier del patrón interferencial estacionario de salida.…”
Section: Introductionunclassified
“…[5], en la cual se sustituyen los espejos móviles por redes de difracción [6]. El concepto teórico de los SHS puede ser implementado mediante arrays de interferómetros Mach-Zehnder (Mach-Zehnder Interferometer, MZI) con diferencias crecientes de caminos ópticos [4,7,8]. El análisis completo del espectro dentro del rango espectral libre del dispositivo se realiza en una sola medida mediante análisis de Fourier del patrón interferencial estacionario de salida.…”
Section: Introductionunclassified
“…In a typical configuration, a waveguide array of MachZehnder interferometers (MZIs) with increasing path differences are used to implement the SHS concept [9,10]. For such a geometry, the source power spectrum and the output interferogram are related by the cosine FT. A similar MZI array geometry, including phase-correction circuits using independent heaters for each MZI, has also been demonstrated [13]. However, when long optical path delays are required for high spectral resolution, similar configurations yield prohibitively large devices.…”
mentioning
confidence: 99%
“…The wavelength resolution (δλ) and the FSR of the device are determined by the maximum path difference and the number of interferometers [10,13], respectively:…”
mentioning
confidence: 99%
“…This configuration does not require any moving element, unlike a conventional FT spectrometer, and its resolution is limited by the maximum measured optical path delay, without requiring an interaction between the measured signal and a local oscillator as in coherent spectroscopy [14]. SHFT spectrometers can be implemented as an interferometer array integrated on a photonic chip [15][16][17][18], allowing multiple input apertures for an increased radiant throughput compared to planar waveguide devices with a single input waveguide, such as arrayed waveguide gratings [19]. Furthermore, this allows us to individually characterize the transfer function of each interferometer element of the array, and in principle it enables the computational compensation of deviations from the ideal design that may arise from fabrication limitations or imperfections.…”
mentioning
confidence: 99%
“…Furthermore, this allows us to individually characterize the transfer function of each interferometer element of the array, and in principle it enables the computational compensation of deviations from the ideal design that may arise from fabrication limitations or imperfections. However, maximum optical path delays in such integrated spectrometer chips are limited to a few centimeters [15][16][17][18].…”
mentioning
confidence: 99%