2020
DOI: 10.1089/ten.tea.2020.0201
|View full text |Cite
|
Sign up to set email alerts
|

Extracellular Matrix for Small-Diameter Vascular Grafts

Abstract: To treat coronary heart disease, coronary artery bypass grafts are used to divert blood flow around blockages in the coronary arteries. Autologous grafts are the gold standard of care, but they are characterized by their lack of availability, low quality, and high failure rates. Alternatively, tissue-engineered small-diameter vascular grafts made from synthetic or natural polymers have not demonstrated adequate results to replace autologous grafts; synthetic grafts result in a loss of patency due to thrombosis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
9
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(11 citation statements)
references
References 142 publications
(212 reference statements)
0
9
0
1
Order By: Relevance
“…In parallel with the development of scaffold optimization tools, equally important is a rich availability of scaffold fabrication techniques and biopolymer choices, both of which promote parametric control for optimizations. Some recent developments in the graft fabrication include: 1) Shortening the production time for cell sheet self-assembly method ( von Bornstädt et al, 2018 ); 2) loading drugs, anti-thrombogenic or pro-regenerative molecules for electrospun grafts or 3D printed grafts ( Zhang et al, 2019 ; Domínguez-Robles et al, 2021 ); 3) refining decellularization protocols for reduced immunological responses ( Schneider et al, 2018 ; Valencia-Rivero et al, 2019 ; Kimicata et al, 2020 ; Lopera Higuita et al, 2021 ); 4) improving the precision of pore generation in scaffold ( Zhen et al, 2021 ); 5) enhancing recellularization for allogenic or xenogenic decellularized grafts ( Dahan et al, 2017 ; Lin et al, 2019 ; Fayon et al, 2021 ); 6) expediting degradation with scaffold composition ( Fukunishi et al, 2021 ) or textile technique ( Fukunishi et al, 2019 ) to enhance matrix remodeling; 7) mimicking the structure and/or composition of vascular ECM using electrochemical fabrication ( Nguyen et al, 2018 ) or an automated technology combining dip-spinning with solution blow spinning ( Akentjew et al, 2019 ); 8) creating patient-specific grafts ( Fukunishi et al, 2017 ); and 9) hybrid approaches, for example, combining electrospinning with decellularized matrices ( Gong et al, 2016 ; Ran et al, 2019 ; Wu et al, 2019 ; Yang et al, 2019 ).…”
Section: Counteracting Adverse Remodeling With Regenerative Signalsmentioning
confidence: 99%
“…In parallel with the development of scaffold optimization tools, equally important is a rich availability of scaffold fabrication techniques and biopolymer choices, both of which promote parametric control for optimizations. Some recent developments in the graft fabrication include: 1) Shortening the production time for cell sheet self-assembly method ( von Bornstädt et al, 2018 ); 2) loading drugs, anti-thrombogenic or pro-regenerative molecules for electrospun grafts or 3D printed grafts ( Zhang et al, 2019 ; Domínguez-Robles et al, 2021 ); 3) refining decellularization protocols for reduced immunological responses ( Schneider et al, 2018 ; Valencia-Rivero et al, 2019 ; Kimicata et al, 2020 ; Lopera Higuita et al, 2021 ); 4) improving the precision of pore generation in scaffold ( Zhen et al, 2021 ); 5) enhancing recellularization for allogenic or xenogenic decellularized grafts ( Dahan et al, 2017 ; Lin et al, 2019 ; Fayon et al, 2021 ); 6) expediting degradation with scaffold composition ( Fukunishi et al, 2021 ) or textile technique ( Fukunishi et al, 2019 ) to enhance matrix remodeling; 7) mimicking the structure and/or composition of vascular ECM using electrochemical fabrication ( Nguyen et al, 2018 ) or an automated technology combining dip-spinning with solution blow spinning ( Akentjew et al, 2019 ); 8) creating patient-specific grafts ( Fukunishi et al, 2017 ); and 9) hybrid approaches, for example, combining electrospinning with decellularized matrices ( Gong et al, 2016 ; Ran et al, 2019 ; Wu et al, 2019 ; Yang et al, 2019 ).…”
Section: Counteracting Adverse Remodeling With Regenerative Signalsmentioning
confidence: 99%
“…Surface coating of ECM on synthetic vascular scaffolds, either by physical or chemical means, is a viable and facile strategy. 5 In a specific study, ECM proteins such as collagen, elastin, and gelatin were directly blended with a polyurethane (PU) matrix for the production of fibrous scaffolds by using a rotary jet spinning method. This modification improved the viability, adhesion, and proliferation of endothelial cells (EC) on the PU surface.…”
Section: Introductionmentioning
confidence: 99%
“…Кроме того, процесс забора и последующая оценка трансплантата перед имплантацией могут повредить сосуд и привести к эндотелиальной дисфункции, провоспалительной реакции и в конечном итоге к тромбозу и окклюзии трансплантата. Высокие показатели неудач делают этот метод лечения в значительной степени неадекватным, что приводит к разработке неаутологичных альтернатив [8][9][10]. Изделия из ксеногенных и синтетических материалов, применяемые в клинической практике в настоящее время, хорошо подходят для сосудистых протезов большого диаметра, но подвержены высокому риску тромбообразования, а также гиперплазии неоинтимы в отдаленный после опе ра ци он ный период при малых диаметрах протезов [7,[11][12][13].…”
Section: Introductionunclassified