The excessive noise present within an aircraft cabin during flight operations constitutes a notable origin of fatigue, stress, and communication impediments for both pilots and passengers. Ensuring the comfort, well-being, and safety of passengers and crew members necessitates the accurate anticipation of noise levels. This study concerns the computation of structure-borne noise levels within the cabin of a tiltrotor aircraft. This investigation employed two distinct methodologies: advanced transfer path analysis (ATPA) and statistical energy analysis (SEA). To assess the results obtained with the ATPA approach, the acquired outcomes were compared with empirically measured sound pressure levels during airplane mode operations. The contributions of air-borne and structure-borne noises were calculated with the ATPA methodology. On the other hand, the structure-borne noise was calculated with a hybrid experimental–SEA model with ACTRAN software, and its results were compared with those of the ATPA method. The results show a good agreement between these methods at high frequencies, while at low frequencies, certain adjustments or modifications to the SEA model are necessary to predict the noise levels.