The synthesis of the vasoconstrictor peptide endothelin-2 (ET-2) is dependent on hydrolysis of the biologically inactive intermediate big ET-2 by an endothelin-converting enzyme (ECE). Here, mechanisms inducing ET-2 synthesis have been investigated using the human renal adenocarcinoma cell line (ACHN). Synthesis of ET-2 by ACHN cells was inhibited by phosphoramidon (IC(50( congruent with11 microM). To determine whether ET-2 synthesis occurs in parallel with the metallopeptidase ECE-1, a putative processing peptidase for big ET-2, changes in the levels of their mRNAs were compared by semi-quantitative RT-PCR under conditions causing the upregulation of ET-2 synthesis. Tumour necrosis factor-alpha (TNFalpha), forskolin and a cell-permeable cAMP analogue (dibutyryl cAMP) caused concentration-dependent increases in ET-2 synthesis. Combination of forskolin or dibutyryl cAMP with TNFalpha produced a significantly greater increase in ET-2 production than these agents alone, indicating that adenylate cyclase and TNFalpha induce ET-2 synthesis by separate signalling pathways. Studies using receptor selective TNFalpha mutants, (125(I-TNFalpha binding and TNF receptor mRNA showed that type-1 TNF receptors mediate the ET-2 response to TNFalpha. PreproET-2 mRNA levels were increased by TNFalpha at 1 h and 2 h, but returned to control levels at 4 h. Treatment with forskolin significantly increased preproET-2 mRNA levels after 1 h and 4 h. ACHN cells expressed ECE-1b and ECE-1c, but not the ECE-1a isoform of this peptidase. RT-PCR for the combined isoforms ECE-1b/c/d showed TNFalpha to increase mRNA levels at 2 h and 4 h. Forskolin had no effect on ECE-1b/c/d mRNA levels. Thus, expression of ET-2 and ECE-1b/c/d mRNAs in ACHN cells do not display the co-ordinated regulation observed with typical peptide prohormone processing enzymes and their substrates.