Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called a knob that develops at the apex of a hypha. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included peptidases, small secreted proteins with unknown functions, and putative cell surface adhesins containing carbohydrate-binding domains, including the WSC domain. Phylogenetic analysis showed that all upregulated WSC domain proteins belonged to a large, expanded cluster of paralogs in M. haptotylum. Several peptidases and homologs of experimentally verified proteins in other pathogenic fungi were also upregulated in the knob proteome. Complementary profiling of gene expression at the transcriptome level showed poor correlation between the upregulation of knob proteins and their corresponding transcripts. We propose that the traps of M. haptotylum contain many of the proteins needed in the early stages of infection and that the trap cells can tightly control the translation and degradation of these proteins to minimize the cost of protein synthesis. N ematode-trapping fungi have the unique ability to capture and infect free-living nematodes (1). Given their potential use as biological control agents for plant-and animal-parasitic nematodes (2), there is much interest in studying their infection biology. To enter the parasitic stage, nematode-trapping fungi develop a unique morphological structure called traps. These traps develop from hyphal branches, either spontaneously or in response to signals from the environment, such as peptides or other compounds released by the host nematode (3). Molecular phylogeny studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Within this clade, the trapping mechanisms have evolved along two major lineages, one leading to species with constricting rings and the other to species with adhesive traps, including three-dimensional networks, knobs, and branches (4-6).Despite large variation in their morphology, adhesive traps share a unique ultrastructure that clearly separates them from vegetative hyphae (3). One feature that is common to all traps is the presence of numerous cytosolic organelles called dense bodies. These organelles have catalase and D-amino acid oxidase activities, which indicates that they are peroxisome-like organelles (3). However, the function of these organelles is not yet fully understood. Another feature of th...