Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The basic requirements for the grid connection of the generator motor of the gravity energy storage system are: the phase sequence, frequency, amplitude, and phase of the voltage at the generator end and the grid end must be consistent. However, in actual working conditions, there will always be errors in the voltage indicators of the generator and grid terminals, resulting in transient impulse currents. In addition, due to the difference between gravity energy storage systems and conventional power generation units, frequent switching between charging and discharging operating conditions is required according to the needs of the power grid. Each switching requires the completion of the generator motor startup and grid connection. If there is always a significant error in the voltage indicators between the generator and grid terminals during frequent grid connection, stable transient surge currents will be generated. Without human intervention, long-term operation will bring hidden dangers to the safety of the grid connected system, leading to a series of consequences such as equipment aging and even damage. In response to the above issues, this article establishes a gravity energy storage power generation/motor grid connection model. Through simulation analysis, the variation law of the weight of the impact of different terminal voltage indicators on the grid connected transient impulse current is summarized. A grid connection method for gravity energy storage systems based on sensitivity analysis of voltage grid connection indicators is proposed. Through simulation verification, this method can significantly reduce the grid connected transient impulse current while improving the success rate of grid connection, The correctness and practicality of the proposed method have been fully verified.
The basic requirements for the grid connection of the generator motor of the gravity energy storage system are: the phase sequence, frequency, amplitude, and phase of the voltage at the generator end and the grid end must be consistent. However, in actual working conditions, there will always be errors in the voltage indicators of the generator and grid terminals, resulting in transient impulse currents. In addition, due to the difference between gravity energy storage systems and conventional power generation units, frequent switching between charging and discharging operating conditions is required according to the needs of the power grid. Each switching requires the completion of the generator motor startup and grid connection. If there is always a significant error in the voltage indicators between the generator and grid terminals during frequent grid connection, stable transient surge currents will be generated. Without human intervention, long-term operation will bring hidden dangers to the safety of the grid connected system, leading to a series of consequences such as equipment aging and even damage. In response to the above issues, this article establishes a gravity energy storage power generation/motor grid connection model. Through simulation analysis, the variation law of the weight of the impact of different terminal voltage indicators on the grid connected transient impulse current is summarized. A grid connection method for gravity energy storage systems based on sensitivity analysis of voltage grid connection indicators is proposed. Through simulation verification, this method can significantly reduce the grid connected transient impulse current while improving the success rate of grid connection, The correctness and practicality of the proposed method have been fully verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.