Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Study on knowledge-based systems for scientific publications is growing very broadly. However, most of these studies do not explicitly discuss the knowledge management (KM) component as knowledge management system (KMS) implementation. This background causes academic institutions to face challenges in developing KMS to support scholarly publication cycle (SPC). Therefore, this study aims to develop a new KMS conceptual model, Identify critical components and provide research gap opportunities for future KM studies on SPC. Design/methodology/approach This study used a systematic literature review (SLR) method with the procedure from Kitchenham et al. Then, the SLR results are compiled into a conceptual model design based on a framework on KM foundations and KM solutions. Finally, the model design was validated through interviews with related field experts. Findings The KMS for SPC focuses on the discovery, sharing and application of knowledge. The majority of KMS use recommendation systems technology with content-based filtering and collaborative filtering personalization approaches. The characteristics data used in KMS for SPC are structured and unstructured. Metadata and article abstracts are considered sufficiently representative of the entire article content to be used as a search tool and can provide recommendations. The KMS model for SPC has layers of KM infrastructure, processes, systems, strategies, outputs and outcomes. Research limitations/implications This study has limitations in discussing tacit knowledge. In contrast, tacit knowledge for SPC is essential for scientific publication performance. The tacit knowledge includes experience in searching, writing, submitting, publishing and disseminating scientific publications. Tacit knowledge plays a vital role in the development of knowledge sharing system (KSS) and KCS. Therefore, KSS and KCS for SPC are still very challenging to be researched in the future. KMS opportunities that might be developed further are lessons learned databases and interactive forums that capture tacit knowledge about SPC. Future work potential could identify other types of KMS in academia and focus more on SPC. Originality/value This study proposes a novel comprehensive KMS model to support scientific publication performance. This model has a critical path as a KMS implementation solution for SPC. This model proposes and recommends appropriate components for SPC requirements (KM processes, technology, methods/techniques and data). This study also proposes novel research gaps as KMS research opportunities for SPC in the future.
Purpose Study on knowledge-based systems for scientific publications is growing very broadly. However, most of these studies do not explicitly discuss the knowledge management (KM) component as knowledge management system (KMS) implementation. This background causes academic institutions to face challenges in developing KMS to support scholarly publication cycle (SPC). Therefore, this study aims to develop a new KMS conceptual model, Identify critical components and provide research gap opportunities for future KM studies on SPC. Design/methodology/approach This study used a systematic literature review (SLR) method with the procedure from Kitchenham et al. Then, the SLR results are compiled into a conceptual model design based on a framework on KM foundations and KM solutions. Finally, the model design was validated through interviews with related field experts. Findings The KMS for SPC focuses on the discovery, sharing and application of knowledge. The majority of KMS use recommendation systems technology with content-based filtering and collaborative filtering personalization approaches. The characteristics data used in KMS for SPC are structured and unstructured. Metadata and article abstracts are considered sufficiently representative of the entire article content to be used as a search tool and can provide recommendations. The KMS model for SPC has layers of KM infrastructure, processes, systems, strategies, outputs and outcomes. Research limitations/implications This study has limitations in discussing tacit knowledge. In contrast, tacit knowledge for SPC is essential for scientific publication performance. The tacit knowledge includes experience in searching, writing, submitting, publishing and disseminating scientific publications. Tacit knowledge plays a vital role in the development of knowledge sharing system (KSS) and KCS. Therefore, KSS and KCS for SPC are still very challenging to be researched in the future. KMS opportunities that might be developed further are lessons learned databases and interactive forums that capture tacit knowledge about SPC. Future work potential could identify other types of KMS in academia and focus more on SPC. Originality/value This study proposes a novel comprehensive KMS model to support scientific publication performance. This model has a critical path as a KMS implementation solution for SPC. This model proposes and recommends appropriate components for SPC requirements (KM processes, technology, methods/techniques and data). This study also proposes novel research gaps as KMS research opportunities for SPC in the future.
Background: Amidst a rapidly evolving digital landscape that accelerates the flow of information, higher education institutions face the unique challenge of managing vast and dynamic knowledge resources. This research delves into the motivations and innovative solutions for developing Knowledge Management Systems (KMS), which is key to optimizing knowledge resource utilization and enhancing academic collaboration. Objective: This research provides a comprehensive mapping of problems and solutions for developing university knowledge management systems based on previous research. Not only that, but the results of this study also suggest three future research studies that can be adopted. Methods: This study used the Kitchenham systematic literature review method. The author uses literature in the form of journals and conference proceedings published from 2019 to 2023. Twenty-three articles were used for this study from 5 databases, such as ACM, ProQuest, Scopus, Taylor & Francis, and IEEE Xplore. Results: This study reveals research trends in knowledge management systems within higher education, examining aspects such as country, data collection methods, research methodologies, and theoretical frameworks. The main problems motivating the development of KMS are identified and categorized based on the people, process, and technology framework. In overcoming these problems in the university business process, there are several alternative solutions, both in the form of requirements and systems. Thus, the results of this study seek to provide guidelines for future research to adopt alternative solutions from this research and develop KMS to provide new solutions. Conclusion: This study advances knowledge about various trends, motivations, requirements, and system solutions to address KMS problems in higher education. The authors' research results can add valuable insights to improve our understanding of the development of KMS in universities in various countries. Future research can identify new potential in KMS in business processes currently running in a university with appropriate methodologies. Keywords: Knowledge management system, higher education, systematic literature review, problem, solution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.