Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The global increase in energy consumption, driven by population growth and improved living standards, has led to a heavy reliance on fossil fuels, causing significant environmental concerns. This has prompted a shift toward sustainable energy sources, with biomass, especially lignocellulosic forest biomass, emerging as a key alternative due to its abundance and carbon-neutral potential. Microwave-assisted pyrolysis (MAP) is an efficient method for converting forest biomass into valuable bioproducts and bioenergy with reduced energy use. This review introduces biomass types, focusing on forest biomass and its role in global energy production. It compares MAP to conventional pyrolysis, highlighting the benefits of rapid, uniform heating and improved product yields. Key operational conditions, such as temperature, microwave power, biomass size, and catalyst ratios, are discussed in relation to their impact on product quality and yield. Despite its advantages, MAP faces challenges, particularly in temperature control, which can affect bio-oil yield and quality. High temperatures may cause unwanted secondary reactions, while low temperatures can lead to incomplete decomposition. Research into biomass dielectric properties and process modeling is essential in order to optimize MAP and scale it up for industrial use. Addressing bio-oil quality issues through catalytic upgrading is also critical for broader adoption.
The global increase in energy consumption, driven by population growth and improved living standards, has led to a heavy reliance on fossil fuels, causing significant environmental concerns. This has prompted a shift toward sustainable energy sources, with biomass, especially lignocellulosic forest biomass, emerging as a key alternative due to its abundance and carbon-neutral potential. Microwave-assisted pyrolysis (MAP) is an efficient method for converting forest biomass into valuable bioproducts and bioenergy with reduced energy use. This review introduces biomass types, focusing on forest biomass and its role in global energy production. It compares MAP to conventional pyrolysis, highlighting the benefits of rapid, uniform heating and improved product yields. Key operational conditions, such as temperature, microwave power, biomass size, and catalyst ratios, are discussed in relation to their impact on product quality and yield. Despite its advantages, MAP faces challenges, particularly in temperature control, which can affect bio-oil yield and quality. High temperatures may cause unwanted secondary reactions, while low temperatures can lead to incomplete decomposition. Research into biomass dielectric properties and process modeling is essential in order to optimize MAP and scale it up for industrial use. Addressing bio-oil quality issues through catalytic upgrading is also critical for broader adoption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.