The present study
complements our previous studies of the reactions
of hydrogen atoms with C
5
alkene species including 1- and
2-pentene and the branched isomers (2-methyl-1-butene, 2-methyl-2-butene,
and 3-methyl-1-butene), by studying the reactions of hydrogen atoms
with C
2
–C
4
alkenes (ethylene, propene,
1- and 2-butene, and isobutene). The aim of the current work is to
develop a hierarchical set of rate constants for Ḣ atom addition
reactions to C
2
–C
5
alkenes, both linear
and branched, which can be used in the development of chemical kinetic
models. High-pressure limiting and pressure-dependent rate constants
are calculated using the Rice–Ramsperger–Kassel–Marcus
(RRKM) theory and a one-dimensional master equation (ME). Rate constant
recommendations for Ḣ atom addition and abstraction reactions
in addition to alkyl radical decomposition reactions are also proposed
and provide a useful tool for use in mechanisms of larger alkenes
for which calculations do not exist. Additionally, validation of our
theoretical results with single-pulse shock-tube pyrolysis experiments
is carried out. An improvement in species mole fraction predictions
for alkene pyrolysis is observed, showing the relevance of the present
study.