2021
DOI: 10.1016/j.actaastro.2021.08.017
|View full text |Cite
|
Sign up to set email alerts
|

Experimental and theoretical studies on thermoacoustic limit cycle oscillation in a simplified solid rocket motor using flat flame burner

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 38 publications
0
2
0
Order By: Relevance
“…Energy conversion from heat to sound is desired in thermoacoustic engines [1][2][3], because there are no or fewer moving parts and non-exotic materials involved. When this occurs in most modern combustion equipment with high energy densities (such as in liquid/solid rocket engines [4][5][6], aero-engines [7][8][9], or land-based gas turbines [10][11][12]), intense thermoacoustic oscillations may occur, which pose a significant risk due to destructive damage [13][14][15]. This may include, structural vibration fatigue, overloaded heating to the combustor walls, and even explosion.…”
Section: Introductionmentioning
confidence: 99%
“…Energy conversion from heat to sound is desired in thermoacoustic engines [1][2][3], because there are no or fewer moving parts and non-exotic materials involved. When this occurs in most modern combustion equipment with high energy densities (such as in liquid/solid rocket engines [4][5][6], aero-engines [7][8][9], or land-based gas turbines [10][11][12]), intense thermoacoustic oscillations may occur, which pose a significant risk due to destructive damage [13][14][15]. This may include, structural vibration fatigue, overloaded heating to the combustor walls, and even explosion.…”
Section: Introductionmentioning
confidence: 99%
“…Energy conversion from heat to sound is desired in thermoacoustic engines [1,2], because there are no moving parts or fewer moving parts and non-exotic materials involved. When this occurs in most modern combustion equipment with high energy densities (such as in liquid/solid rocket engines [3,4], aero-engines [5][6][7], or land-based gas turbines [8][9][10]), intense thermoacoustic oscillations may occur, which pose a significant risk due to destructive damage [11][12][13]. This may include structural vibration fatigue, overloaded heating to the combustor walls, and even explosion.…”
Section: Introductionmentioning
confidence: 99%
“…In Sect.2, the frequency-domain model of a flow duct with the structure-modified Helmholtz resonator used is proposed by solving linearized NS (Navier-Stokes) governing equations. [23][24][25][26][27][28][29] Validation is conducted first to justify the proposed model by considering with the conventional Helmholtz resonator (i.e., no rigid baffle applied at the neck) via comparing with theoretical and experimental results available in the literature. The model is then applied to study the transmission loss performance of the proposed Helmholtz resonators with the rigid baffle implemented at the neck.…”
Section: Introductionmentioning
confidence: 99%