The process of combusting Tuva coals before and after their carbonization was studied using the methods of thermogravimetric analysis and electron microscopy. Coal samples were subjected to thermomechanical and elemental analysis, which revealed a higher content of volatile substances in Kaa-Khem coal (47.5 %) compared to Chadan coal (10 %). Following carbonization, a decrease in volatile substances to 11.5 % and 9.3 %, respectively, was observed. The conducted thermogravimetric analysis showed the ignition temperature of the coke residue of the Kaa-Khem and Chadan coal samples to increase by 76 °C and 90 °C, respectively, after carbonization. The burnup temperature of the coke residue after carbonizing (723 °C) Kaa-Khem coal samples remained effectively the same, while the Chadan coal showed an increase from 704 °C to 727 °C. The carbonization of coals was established to decrease the maximum reaction rate from 19 % per min to 10% per min for Kaa-Khem coal and from 26 % per min to 11 % per min for Chadan coal. The process of combusting the coke residue after coal carbonization was found to shift into the region of higher temperatures: from 448–723°C to 524–724°C for Kaa-Khem coal and from 436–704 °C to 526–727 °C for Chadan coal. A morphological analysis of the surface of coal particles after carbonization showed the appearance of larger-size pores and cracks on the surface of carbonates compared to coal before carbonization. The conclusion is made that the content of volatile substances, rather than the developed pore structure, comprises the main factor in improving the combustion characteristics of Tuva coals under the conditions of non-isothermal heating before and after their carbonization.