For years, the debate has been: 'Is the hippocampus the cognitive map?' or 'Is the hippocampus the core of memory?' These two hypotheses derived their original power from two key experiments-the cognitive map theory from the remarkable spatial correlates seen in recordings of hippocampal pyramidal cells and the memory theory from the profound amnesias seen in the patient H.M. Both of these key experiments have been reinterpreted over the years: hippocampal cells are correlated with much more than place and H.M. is missing much more than just his hippocampus. However, both theories are still debated today. The hippocampus clearly plays a role in both navigation and memory processing. The question that must be addressed is rather: 'What is the role played by the hippocampus in the navigation and memory systems?' By looking at the navigation system as a whole, one can identify the major role played by the hippocampus as correcting for accumulation errors that occur within idiothetic navigation systems. This is most clearly experimentally evident as reorientation when an animal is lost. Carrying this over to a more general process, this becomes a role of recalling a context, bridging a contextual gap, or, in other words, it becomes a form of recognition memory. I will review recent experimental data which seems to support this theory over the more general spatial or memory theories traditionally applied to hippocampus.