Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We deal with the following Sturm–Liouville boundary value problem: − P t x ′ t ′ + B t x t = λ ∇ x V t , x , a.e. t ∈ 0,1 x 0 cos α − P 0 x ′ 0 sin α = 0 x 1 cos β − P 1 x ′ 1 sin β = 0 Under the subquadratic condition at zero, we obtain the existence of two nontrivial solutions and infinitely many solutions by means of the linking theorem of Schechter and the symmetric mountain pass theorem of Kajikiya. Applying the results to Sturm–Liouville equations satisfying the mixed boundary value conditions or the Neumann boundary value conditions, we obtain some new theorems and give some examples to illustrate the validity of our results.
We deal with the following Sturm–Liouville boundary value problem: − P t x ′ t ′ + B t x t = λ ∇ x V t , x , a.e. t ∈ 0,1 x 0 cos α − P 0 x ′ 0 sin α = 0 x 1 cos β − P 1 x ′ 1 sin β = 0 Under the subquadratic condition at zero, we obtain the existence of two nontrivial solutions and infinitely many solutions by means of the linking theorem of Schechter and the symmetric mountain pass theorem of Kajikiya. Applying the results to Sturm–Liouville equations satisfying the mixed boundary value conditions or the Neumann boundary value conditions, we obtain some new theorems and give some examples to illustrate the validity of our results.
The existence of three solutions for nonlinear operator equations is established via index theory for linear self-adjoint operator equations, critical point reduction method, and three critical points theorems obtained by Brezis-Nirenberg, Ricceri, and Averna-Bonanno. Applying the results to second-order Hamiltonian systems satisfying generalized periodic boundary conditions or Sturm-Liouville boundary conditions and elliptic partial differential equations satisfying Dirichlet boundary value conditions, we obtain some new theorems concerning the existence of three solutions.
<abstract><p>The main purpose of this manuscript is to investigate the Sturm-Liouville BVP for non-autonomous Lagrangian systems. Under the suitable assumptions, we establish an existence theorem for three nonnegative solutions via Bonanno-Candito's three critical point theory. As an application in the complete Sturm-Liouville equations with Sturm-Liouville BVC, we get an existence theorem of three nonnegative solutions. Meanwhile, we give three examples to show the correctness of our results.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.