2015
DOI: 10.5817/am2015-3-163
|View full text |Cite
|
Sign up to set email alerts
|

Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques

Abstract: This paper discusses the existence and multiplicity of solutions for a class of p(x)-Kirchhoff type problems with Dirichlet boundary data of the following form − a + b Ω 1 p(x) |∇u| p(x) dx div |∇u| p(x)−2 ∇u = f (x, u) , in Ω u = 0 on ∂Ω , where Ω is a smooth open subset of R N and p ∈ C(Ω) with N < p − = inf x∈Ω p(x) ≤ p + = sup x∈Ω p(x) < +∞, a, b are positive constants and f : Ω × R → R is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 12 publications
0
3
0
Order By: Relevance
“…According to [37, 38], we notice that W0r,m+false(normalΩfalse)W0r,mfalse(xfalse)false(normalΩfalse)$$ {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right)\subset {W}_0&amp;amp;#x0005E;{r,m(x)}\left(\Omega \right) $$. Consider false{e1,e2,false}$$ \left\{{e}_1,{e}_2,\dots \right\} $$, a Schauder basis of the space W0r,m+false(normalΩfalse)$$ {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right) $$ which means that each zW0r,m+false(normalΩfalse)$$ z\in {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right) $$ has a unique representation z=i=1aiei$$ z&amp;amp;#x0003D;\sum \limits_{i&amp;amp;#x0003D;1}&amp;amp;#x0005E;{\infty }{a}_i{e}_i $$, where ai$$ {a}_i $$ are real numbers.…”
Section: Resultsmentioning
confidence: 99%
“…According to [37, 38], we notice that W0r,m+false(normalΩfalse)W0r,mfalse(xfalse)false(normalΩfalse)$$ {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right)\subset {W}_0&amp;amp;#x0005E;{r,m(x)}\left(\Omega \right) $$. Consider false{e1,e2,false}$$ \left\{{e}_1,{e}_2,\dots \right\} $$, a Schauder basis of the space W0r,m+false(normalΩfalse)$$ {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right) $$ which means that each zW0r,m+false(normalΩfalse)$$ z\in {W}_0&amp;amp;#x0005E;{r,{m}&amp;amp;#x0005E;{&amp;amp;#x0002B;}}\left(\Omega \right) $$ has a unique representation z=i=1aiei$$ z&amp;amp;#x0003D;\sum \limits_{i&amp;amp;#x0003D;1}&amp;amp;#x0005E;{\infty }{a}_i{e}_i $$, where ai$$ {a}_i $$ are real numbers.…”
Section: Resultsmentioning
confidence: 99%
“…(Ω, m i )(see earlier studies [36,37]). With the same argument as proof of Lemma 2.2, consider {e 1 , e 2 , ...} as a Schauder basis of the space D…”
Section: A Class Of Quasilinear Elliptic Pi(x)-kirchhoff-type Systemmentioning
confidence: 99%
“…Proof Notice that D01,pi+false(normalΩ,mifalse)D01,pifalse(xfalse)false(normalΩ,mifalse)$$ {D}_0&amp;amp;amp;#x0005E;{1,{p}_i&amp;amp;amp;#x0005E;{&amp;amp;amp;#x0002B;}}\left(\Omega, {m}_i\right)\subset {D}_0&amp;amp;amp;#x0005E;{1,{p}_i(x)}\left(\Omega, {m}_i\right) $$(see earlier studies [36, 37]). With the same argument as proof of Lemma 2.2, consider false{e1,e2,...false}$$ \left\{{e}_1,{e}_2,\dots \right\} $$ as a Schauder basis of the space D01,pi+false(normalΩ,mifalse)$$ {D}_0&amp;amp;amp;#x0005E;{1,{p}_i&amp;amp;amp;#x0005E;{&amp;amp;amp;#x0002B;}}\left(\Omega, {m}_i\right) $$.…”
Section: A Class Of Quasilinear Elliptic Pifalse(xfalse)$$ {P}_i(x) ...mentioning
confidence: 99%
“…According to [26,40,54,64], we notice that W r,m + where a i are real numbers. We consider for each j ∈ N * that E j , the subspace of W r,m + 0 (Ω) generated by j vectors {e 1 , e 2 , .., e j }.…”
Section: Proof Of Theorem 41mentioning
confidence: 99%