The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and ␥ radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function-the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene.Cells of all organisms have evolved an intricate series of DNA repair pathways to counteract the deleterious effects of all types of DNA damage. In Escherichia coli, nucleotide excision repair (NER) of UV damage requires the products of six genes. A complex of the UvrA and UvrB proteins binds to DNA and translocates to the site of the damage. The UvrC product then attaches to the complex, displacing UvrA, and the damaged DNA strand is nicked on both sides of the damaged site. The helicase activity of the UvrD product releases the oligonucleotide containing the damage, and DNA polymerase I and ligase complete the repair process (24). In eukaryotes, NER requires considerably more gene products, most of which are highly conserved (20). In Saccharomyces cerevisiae, the products of the RAD1, -2, -3, -4, -10, -14, and -25 genes are absolutely required for excision repair of UV damage, whereas there is only a partial requirement for RAD7, -16, and -23. There is evidence that the products of many of these genes form a multisubunit complex (e.g., see reference 53). In Schizosaccharomyces pombe, genes encoding highly homologous proteins have been identified (9,10,30,39), demonstrating the conservation of the classical NER pathway in this yeast.Null mutations in the S. cerevisiae NER genes RAD1, -2, -3, -10, and -14 result in a total deficiency in excision repair of UV-induced cyclobutane dimers and 6-4 photoproducts (28). Null mutants of the S. pombe homologs of RAD1 and RAD2 (rad16 and rad13, respectively), while showing many properties expected of excision repair-deficient mutants, are still able to excise UV-induced cyclobutane dimers and 6-4 photoproducts at a significant rate (7, 27). These results suggest that, in contrast to S. cerevisiae, there is a second pathway in S. pombe for removal of UV photoproducts.Most of the rad mutants of S. pombe are sensitive to both UV and ␥ irradiation. Some of these are involved in checkpoint control of the cell cycle to radiation (2, 3, 41). Others, which are particularly sensitive to ionizing radiation, are deficient in recombination repair (6,29,33,54). No mutant which is sensitive to ionizing but not to UV irradiation has yet been identified. The S. pombe rad18-X mutant ...