2019
DOI: 10.1152/ajpcell.00392.2018
|View full text |Cite
|
Sign up to set email alerts
|

Excessive activation of NMDA receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting alveolarization in bronchopulmonary dysplasia

Abstract: We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia als… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 47 publications
0
5
0
Order By: Relevance
“…In the intrauterine hypoxia group, BM-MSCs proliferation and cell viability decreased markedly. These results suggest that intrauterine hypoxia caused by high concentrations of glutamate may result in excessive activation of important agonist NMDARs and damage the function of BM-MSCs (21). Also, increased glutamate concentration in lung tissue activates NMDARs and mediates the process of acute lung injury and lung fibrosis.…”
Section: Introductionmentioning
confidence: 87%
“…In the intrauterine hypoxia group, BM-MSCs proliferation and cell viability decreased markedly. These results suggest that intrauterine hypoxia caused by high concentrations of glutamate may result in excessive activation of important agonist NMDARs and damage the function of BM-MSCs (21). Also, increased glutamate concentration in lung tissue activates NMDARs and mediates the process of acute lung injury and lung fibrosis.…”
Section: Introductionmentioning
confidence: 87%
“…In preclinical studies, newborn mice or rats exposed to a hyperoxia (75%) microenvironment are widely used to mimic the pathogensis of human BPD [27]. Over the years, systematic administration, or local injection (intranasal [28] or intratracheal [29]) of MSCs have defined the beneficial impact on attenuating experimental BPD through inhibition of Nmethyl-D-aspartic acid (NMDA) receptors [30], reninangiotensin system (RAS) [31], TLR4 expression [32], decorin [29] and CTGF secretion [33], accompanied by upregulating the production of aminoacyl-peptide hydrolase [34], PTX3 [35], VEGF [33], stromal cell-derived factor 1 [36], macrophage stimulating factor 1 [37], and osteopontin [37], leading to increased survival rate, downregulated inf lammation-and hyperoxia-induced defect ive alveolarization, and reduced lung fibrosis in experimental BPD mice. Moreover, MSC stably transfected with a truncated version of CC chemokine ligand 2 (CCL2) promotes macrophage activation, and is seen to be more effective than MSCs alone [38].…”
Section: Bronchopulmonary Dysplasiamentioning
confidence: 99%
“…These histological changes were accompanied by evidence of BPD-characteristic lung inflammation as increased counts for total leukocytes, lymphocytes, macrophages and neutrophils were found in BALF, and increased gene expression of the BPD-associated cytokines IL-18, TNF-α, CXCL1, CTGF and TGF-β1 was found in lung tissue samples. IL-18 and TNF-α are pro-inflammatory cytokines previously reported to be associated with BPD or pulmonary hypertension in preterm infants or experimental models of BPD 27 30 . Interestingly, IL18 is activated by the inflammasome, and its secretion is dependent on GSDMD-p30 pore formation 17 19 .…”
Section: Discussionmentioning
confidence: 99%