Background
Global deletion of microsomal prostaglandin E synthase (mPGES) -1 in mice attenuates the response to vascular injury without a predisposition to thrombogenesis or hypertension. However, enzyme deletion results in cell specific differential utilization by prostaglandin (PG) synthases of the accumulated PGH2 substrate. Here, we generated mice deficient in mPGES-1 in vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and myeloid cells further to elucidate the cardiovascular function of this enzyme.
Methods and Results
VSMC and EC mPGES-1 deletion did not alter blood pressure at baseline or in response to a high salt diet. The propensity to evoked macrovascular and microvascular thrombogenesis was also unaltered. However, both VSMC and EC mPGES-1 deficient mice exhibited a markedly exaggerated neointimal hyperplastic response to wire injury of the femoral artery compared to their littermate controls. The hyperplasia was associated with increased proliferating cell nuclear antigen (PCNA) and tenascin-C (TN-C) expression. In contrast, the response to injury was markedly suppressed by myeloid cell depletion of mPGES-1 with decreased hyperplasia, leukocyte infiltration and expression of PCNA and TN-C. Conditioned medium derived from mPGES-1 deficient macrophages less potently induced VSMC proliferation and migration than that from wild type macrophages.
Conclusion
Deletion of mPGES-1 in the vasculature and myeloid cells differentially modulates the response to vascular injury, implicating macrophage mPGES-1 as a cardiovascular drug target.