Background and Purpose
Bone marrow-derived cells (BMDCs) home to vascular endothelial growth factor (VEGF)-induced brain angiogenic foci, and VEGF induces cerebrovascular dysplasia in adult endoglin heterozygous (Eng+/−) mice. We hypothesized that Eng+/− BMDCs cause cerebrovascular dysplasia in the adult mouse after VEGF stimulation.
Methods
BM transplantation was performed using adult wild-type (WT) and Eng+/− mice as donors/recipients. An adeno-associated viral vector expressing VEGF (AAV-VEGF) was injected into the basal ganglia 4 weeks after transplantation. Vascular density, dysplasia index (vessels >15 μm/100 vessels), and BMDCs in the angiogenic foci were analyzed.
Results
The dysplasia index of WT/Eng+/− BM mice was higher than WT/WT BM mice (p<0.001) and was similar to Eng+/−/Eng+/− BM mice (p=0.2). Dysplasia in Eng+/− mice was partially rescued by WT BM (p<0.001). WT/WT BM and WT/Eng+/− BM mice had similar numbers of BMDCs in the angiogenic foci (p=0.4), most of which were CD68+. Eng+/− monocytes/macrophages expressed less matrix metalloproteinase-9 and Notch1.
Conclusions
ENG-deficient BMDCs are sufficient for VEGF to induce vascular dysplasia in the adult mouse brain. Our data support a previously unrecognized role of BM in the development of cerebrovascular malformations.