Anais Do XXVII Simpósio Brasileiro De Informática Na Educação (SBIE 2016) 2016
DOI: 10.5753/cbie.sbie.2016.1096
|View full text |Cite
|
Sign up to set email alerts
|

Evasão Escolar: Aplicando Mineração de Dados para Identificar Variáveis Relevantes

Abstract: School dropout in Brazilian public education is a huge problem. One in four Brazilians leave school prematurely, before completing high school. This work deals with part of the problem, analyzing school dropout in the last year of Middle School on public schools of Pernambuco/Brazil, with data collected from the official National School Census, between 2011 and 2012. Decision Trees, Rules Induction and Logistic Regression were the Knowledge extraction techniques applied to identify the profile of a dropout stu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
5

Year Published

2017
2017
2022
2022

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(7 citation statements)
references
References 4 publications
0
2
0
5
Order By: Relevance
“…The number of studies that seek to predict dropout has intensified in recent years. Researchers such as [16][17][18][19][20][21] carried out surveys that sought to predict which students were likely to drop out of courses in the face-to-face modality.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…The number of studies that seek to predict dropout has intensified in recent years. Researchers such as [16][17][18][19][20][21] carried out surveys that sought to predict which students were likely to drop out of courses in the face-to-face modality.…”
Section: Related Workmentioning
confidence: 99%
“…Authors in [16,17] used school data from the census between the years 2011 to 2016 in the states of Pernambuco, Sergipe, and Ceará, in Brazil; using predictive characteristics such as age, gender, and demographic region presented significant results within the studied context. Authors in [16] applied the Decision Tree classifier and obtained 69% accuracy. Authors in [17] used data from Ceará and Sergipe between the years 2014 and 2016 and reached 87% on the same metric with logistic regression.…”
Section: Related Workmentioning
confidence: 99%
“…Os autores em [Bezerra et al 2016], apresentam uma pesquisa realizada nas escolas públicas no estado do Pernambuco com o objetivo de identificar um perfil de aluno com predisposição a evasão. Através de técnicas de mineração de dados foram aplicados algoritmos de Árvore de Decisão, Indução de Regra e Regressão Logística nos dados.…”
Section: Trabalhos Relacionadosunclassified
“…Outro trabalho a ser ressaltado é o de Bezerra et al (2016), que analisaram a evasão escolar dos alunos do 9º ano do ensino fundamental das escolas do estado de Pernambuco, baseados nos censos escolares 2011 e 2012. A análise foi efetuada por mais de uma técnica de mineração de dados, a saber, Árvore de Decisão, Indução de Regras e Regressão Logística, com o intuito de detectar o perfil do aluno evadido.…”
Section: Pesquisas Com Mineração De Dados Educacionaisunclassified